GAN--7 info GAN VAE-GAN BiGAN

余生颓废 提交于 2020-01-10 06:00:59

用GAN做 feature extraction

infoGAN

原来的GAN:
在这里插入图片描述
infoGAN:
把输入z分成两部分,假设z是20维,把前十维叫做c,后十维叫做z‘。
训练一个classifier:看generator输出的x,反推出输入的c。可以将generator看做encoder,classifier看做decoder,二者合起来看做一个auto-encoder。这个auto-encoder和一般的auto-encoder正好相反:输入一张图片,预测产生图片的code c
在这里插入图片描述

VAE-GAN

对encoder:
最小化重建误差;让z接近normal
对generator:
最小化重建误差;骗过discriminator
对discriminator:
辨别真实图、生成图和重建图
在这里插入图片描述

BiGAN

encoder:输入图片x,输出编码z
decoder:输入编码z,输出图片
二者的输入输出不是接在一起的;不会把encoder的输出传给decoder,也不会把decoder的输出传给encoder
在这里插入图片描述
添加一个discriminator:
输入x和z,判别一组(x,z)来自encoder还是decoder
在这里插入图片描述
算法:
在这里插入图片描述
BiGAN和AutoEncoder在最优条件下训练结果相同。
在这里插入图片描述

Triple GAN

一个generator,一个discriminator,一个classifier。
其中generator和discriminator组成conditional GAN
少量的label data,大量的unlabel data
在这里插入图片描述

Domain-adversarial training

在这里插入图片描述
绿色是生成器,输入照片x,输出特征 f
粉色是判别器,判别当前特征 f 输入哪个domain
蓝色分类器,判断当前特征 f 输入哪个class
上述三个是同时进行的。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!