cublas matrix inversion from device

拟墨画扇 提交于 2020-01-10 05:39:10

问题


I am trying to run a matrix inversion from the device. This logic works fine if called from the host.

Compilation line is as follows (Linux):

nvcc -ccbin g++ -arch=sm_35 -rdc=true simple-inv.cu -o simple-inv -lcublas_device -lcudadevrt

I get the following warning that I cannot seem to resolve. (My GPU is Kepler. I don't know why it is trying to link to Maxwell routines. I have Cuda 6.5-14):

nvlink warning : SM Arch ('sm_35') not found in '/usr/local/cuda/bin/../targets/x86_64-linux/lib/libcublas_device.a:maxwell_sm50_sgemm.o'

The program runs with:

handle 0 n = 3
simple-inv.cu:63 Error [an illegal memory access was encountered]

The test program is as follows:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>

#define PERR(call) \
  if (call) {\
   fprintf(stderr, "%s:%d Error [%s] on "#call"\n", __FILE__, __LINE__,\
      cudaGetErrorString(cudaGetLastError()));\
   exit(1);\
  }
#define ERRCHECK \
  if (cudaPeekAtLastError()) { \
    fprintf(stderr, "%s:%d Error [%s]\n", __FILE__, __LINE__,\
       cudaGetErrorString(cudaGetLastError()));\
    exit(1);\
  }

__global__ void
inv_kernel(float *a_i, float *c_o, int n)
{ 
  int p[3], info[1], batch;
  cublasHandle_t hdl;
  cublasStatus_t status = cublasCreate_v2(&hdl);
  printf("handle %d n = %d\n", status, n);

  info[0] = 0;
  batch = 1;
  float *a[] = {a_i};
  const float *aconst[] = {a_i};
  float *c[] = {c_o};
  // See
  // http://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf
  //http://stackoverflow.com/questions/27094612/cublas-matrix-inversion-from-device

  status = cublasSgetrfBatched(hdl, n, a, n, p, info, batch);
  __syncthreads();
  printf("rf %d info %d\n", status, info[0]);
  status = cublasSgetriBatched(hdl, n, aconst, n, p,
      c, n, info, batch);
  __syncthreads();
  printf("ri %d info %d\n", status, info[0]);

  cublasDestroy_v2(hdl);
  printf("done\n");
}
static void
run_inv(float *in, float *out, int n)
{
  float *a_d, *c_d;

  PERR(cudaMalloc(&a_d, n*n*sizeof(float)));
  PERR(cudaMalloc(&c_d, n*n*sizeof(float)));
  PERR(cudaMemcpy(a_d, in, n*n*sizeof(float), cudaMemcpyHostToDevice));

  inv_kernel<<<1, 1>>>(a_d, c_d, n);

  cudaDeviceSynchronize();
  ERRCHECK;

  PERR(cudaMemcpy(out, c_d, n*n*sizeof(float), cudaMemcpyDeviceToHost));
  PERR(cudaFree(a_d));
  PERR(cudaFree(c_d));
}

int
main(int argc, char **argv)
{
  float c[9];
  float a[] = {
    1,   2,   3,
    0,   4,   5,
    1,   0,   6 };

  run_inv(a, c, 3);
  return 0;
}

I have followed the guide at http://docs.nvidia.com/cuda/cublas/index.html#device-api section 2.1.9, but I suspect I have overlooked something.

Note: Edited on 11/24 to use correct pointer inputs. This still reports illegal memory access inside the kernel.


回答1:


The warnings about sm_50 are benign. That's my way of saying "they can be safely ignored in this case".

Regarding the code you currently have posted, the problem relates to what is described in the dynamic parallelism documentation around the use of thread-local memory here.

In a nutshell, local memory of the parent thread is "out of scope" in a child kernel launch. Although it's not entirely obvious, the cublas calls from device code are (attempting) to launch child kernels. This means that declarations like this:

int p[3], info[1],

will be problematic if those pointers (e.g. p, info) are passed to a child kernel. The numerical values of the pointers themselves will not be corrupted, but they will not point to anything "meaningful" in the memory space of the child kernel.

There are multiple ways to solve this, but one possible solution is to replace any stack/local allocations of this type with allocations from the "device heap" which can be made via in-kernel malloc.

Here is a fully worked code/example that seems to work correctly for me. The output seems to be correct for the inversion of the given sample matrix:

$ cat t605.cu
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>

#define PERR(call) \
  if (call) {\
   fprintf(stderr, "%s:%d Error [%s] on "#call"\n", __FILE__, __LINE__,\
      cudaGetErrorString(cudaGetLastError()));\
   exit(1);\
  }
#define ERRCHECK \
  if (cudaPeekAtLastError()) { \
    fprintf(stderr, "%s:%d Error [%s]\n", __FILE__, __LINE__,\
       cudaGetErrorString(cudaGetLastError()));\
    exit(1);\
  }

__global__ void
inv_kernel(float *a_i, float *c_o, int n)
{
  int *p = (int *)malloc(3*sizeof(int));
  int *info = (int *)malloc(sizeof(int));
  int batch;
  cublasHandle_t hdl;
  cublasStatus_t status = cublasCreate_v2(&hdl);
  printf("handle %d n = %d\n", status, n);

  info[0] = 0;
  batch = 1;
  float **a = (float **)malloc(sizeof(float *));
  *a = a_i;
  const float **aconst = (const float **)a;
  float **c = (float **)malloc(sizeof(float *));
  *c = c_o;
  // See
  // http://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf
  //http://stackoverflow.com/questions/27094612/cublas-matrix-inversion-from-device
  status = cublasSgetrfBatched(hdl, n, a, n, p, info, batch);
  __syncthreads();
  printf("rf %d info %d\n", status, info[0]);
  status = cublasSgetriBatched(hdl, n, aconst, n, p,
      c, n, info, batch);
  __syncthreads();
  printf("ri %d info %d\n", status, info[0]);
  cublasDestroy_v2(hdl);
  printf("done\n");
}
static void
run_inv(float *in, float *out, int n)
{
  float *a_d, *c_d;

  PERR(cudaMalloc(&a_d, n*n*sizeof(float)));
  PERR(cudaMalloc(&c_d, n*n*sizeof(float)));
  PERR(cudaMemcpy(a_d, in, n*n*sizeof(float), cudaMemcpyHostToDevice));

  inv_kernel<<<1, 1>>>(a_d, c_d, n);

  cudaDeviceSynchronize();
  ERRCHECK;

  PERR(cudaMemcpy(out, c_d, n*n*sizeof(float), cudaMemcpyDeviceToHost));
  PERR(cudaFree(a_d));
  PERR(cudaFree(c_d));
}

int
main(int argc, char **argv)
{
  float c[9];
  float a[] = {
    1,   2,   3,
    0,   4,   5,
    1,   0,   6 };

  run_inv(a, c, 3);
  for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++) printf("%f, ",c[(3*i)+j]);
    printf("\n");}

  return 0;
}
$ nvcc -arch=sm_35 -rdc=true -o t605 t605.cu -lcublas_device -lcudadevrt
nvlink warning : SM Arch ('sm_35') not found in '/shared/apps/cuda/CUDA-v6.5.14/bin/..//lib64/libcublas_device.a:maxwell_sgemm.asm.o'
nvlink warning : SM Arch ('sm_35') not found in '/shared/apps/cuda/CUDA-v6.5.14/bin/..//lib64/libcublas_device.a:maxwell_sm50_sgemm.o'
$ ./t605
handle 0 n = 3
rf 0 info 0
ri 0 info 0
done
1.090909, -0.545455, -0.090909,
0.227273, 0.136364, -0.227273,
-0.181818, 0.090909, 0.181818,
$



回答2:


Could it be that some CUDA function you are running is only supported by different architecture (Even though the documentation says everything used is. I don't get the compiler warnings if I compile with -arch=sm_50. I don't have an sm_50 capable device to test though...

Furthermore those warnings look like some function asm is not available for your architecture so it was linked to a different architecture asm which is not supported by your device so you get some weird error. I think you should take this nvidia developers who understand more what their compiler is doing.

I have access to Compute 3.5 capable device, but unfortunately only with CUDA v 6.0 and using your example (slightly fixed, to compile (const float *) -> (float *) on line 42) and I don't get any compilation warnings (sadly same results though).

Also as mentioned in the comments:

(float**)a_i 

is not making a_i to be of type (float **). You should take the address: &a_i

Changing those didn't help fix the problem but those are some pointers that you can look to explore.



来源:https://stackoverflow.com/questions/27094612/cublas-matrix-inversion-from-device

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!