OpenCV - RobustMatcher using findHomography

瘦欲@ 提交于 2020-01-01 07:23:19

问题


I've implement a Robust matcher found on the internet based on differents tests : symmetry test, Ratio Test and RANSAC test. It works well. I used then findHomography in order to have good matches.

Here the code :

    RobustMatcher::RobustMatcher() : ratio(0.65f), refineF(true),confidence(0.99), distance(3.0) {
           detector = new cv::SurfFeatureDetector(400); //Better than ORB
           //detector = new cv::SiftFeatureDetector; //Better than ORB
           //extractor= new cv::OrbDescriptorExtractor();
           //extractor= new cv::SiftDescriptorExtractor;
           extractor= new cv::SurfDescriptorExtractor;
          // matcher= new cv::FlannBasedMatcher;
           matcher= new cv::BFMatcher();

    }
    // Clear matches for which NN ratio is > than threshold
    // return the number of removed points
    // (corresponding entries being cleared,
    // i.e. size will be 0)
    int RobustMatcher::ratioTest(std::vector<std::vector<cv::DMatch> >
                                                 &matches) {
      int removed=0;
        // for all matches
      for (std::vector<std::vector<cv::DMatch> >::iterator
               matchIterator= matches.begin();
           matchIterator!= matches.end(); ++matchIterator) {
             // if 2 NN has been identified
             if (matchIterator->size() > 1) {
                 // check distance ratio
                 if ((*matchIterator)[0].distance/
                     (*matchIterator)[1].distance > ratio) {
                    matchIterator->clear(); // remove match
                    removed++;
                 }
             } else { // does not have 2 neighbours
                 matchIterator->clear(); // remove match
                 removed++;
             }
      }
      return removed;
    }

    // Insert symmetrical matches in symMatches vector
    void RobustMatcher::symmetryTest(
        const std::vector<std::vector<cv::DMatch> >& matches1,
        const std::vector<std::vector<cv::DMatch> >& matches2,
        std::vector<cv::DMatch>& symMatches) {
      // for all matches image 1 -> image 2
      for (std::vector<std::vector<cv::DMatch> >::
               const_iterator matchIterator1= matches1.begin();
           matchIterator1!= matches1.end(); ++matchIterator1) {
         // ignore deleted matches
         if (matchIterator1->size() < 2)
             continue;
         // for all matches image 2 -> image 1
         for (std::vector<std::vector<cv::DMatch> >::
            const_iterator matchIterator2= matches2.begin();
             matchIterator2!= matches2.end();
             ++matchIterator2) {
             // ignore deleted matches
             if (matchIterator2->size() < 2)
                continue;
             // Match symmetry test
             if ((*matchIterator1)[0].queryIdx ==
                 (*matchIterator2)[0].trainIdx &&
                 (*matchIterator2)[0].queryIdx ==
                 (*matchIterator1)[0].trainIdx) {
                 // add symmetrical match
                   symMatches.push_back(
                     cv::DMatch((*matchIterator1)[0].queryIdx,
                               (*matchIterator1)[0].trainIdx,
                               (*matchIterator1)[0].distance));
                   break; // next match in image 1 -> image 2
             }
         }
      }
    }

    // Identify good matches using RANSAC
    // Return fundemental matrix
    cv::Mat RobustMatcher::ransacTest(const std::vector<cv::DMatch>& matches,const std::vector<cv::KeyPoint>& keypoints1,
            const std::vector<cv::KeyPoint>& keypoints2,
            std::vector<cv::DMatch>& outMatches) {
        // Convert keypoints into Point2f
        std::vector<cv::Point2f> points1, points2;
        cv::Mat fundemental;
        for (std::vector<cv::DMatch>::const_iterator it= matches.begin();it!= matches.end(); ++it) {
            // Get the position of left keypoints
            float x= keypoints1[it->queryIdx].pt.x;
            float y= keypoints1[it->queryIdx].pt.y;
            points1.push_back(cv::Point2f(x,y));
            // Get the position of right keypoints
            x= keypoints2[it->trainIdx].pt.x;
            y= keypoints2[it->trainIdx].pt.y;
            points2.push_back(cv::Point2f(x,y));
        }
        // Compute F matrix using RANSAC
        std::vector<uchar> inliers(points1.size(),0);
        if (points1.size()>0&&points2.size()>0){
            cv::Mat fundemental= cv::findFundamentalMat(
                        cv::Mat(points1),cv::Mat(points2), // matching points
                        inliers,       // match status (inlier or outlier)
                        CV_FM_RANSAC, // RANSAC method
                        distance,      // distance to epipolar line
                        confidence); // confidence probability
            // extract the surviving (inliers) matches
            std::vector<uchar>::const_iterator itIn= inliers.begin();
            std::vector<cv::DMatch>::const_iterator itM= matches.begin();
            // for all matches
            for ( ;itIn!= inliers.end(); ++itIn, ++itM) {
                if (*itIn) { // it is a valid match
                    outMatches.push_back(*itM);
                }
            }
            if (refineF) {
                // The F matrix will be recomputed with
                // all accepted matches
                // Convert keypoints into Point2f
                // for final F computation
                points1.clear();
                points2.clear();
                for (std::vector<cv::DMatch>::const_iterator it= outMatches.begin();it!= outMatches.end(); ++it) {
                    // Get the position of left keypoints
                    float x= keypoints1[it->queryIdx].pt.x;
                    float y= keypoints1[it->queryIdx].pt.y;
                    points1.push_back(cv::Point2f(x,y));
                    // Get the position of right keypoints
                    x= keypoints2[it->trainIdx].pt.x;
                    y= keypoints2[it->trainIdx].pt.y;
                    points2.push_back(cv::Point2f(x,y));
                }
                // Compute 8-point F from all accepted matches
                if (points1.size()>0&&points2.size()>0){
                    fundemental= cv::findFundamentalMat(cv::Mat(points1),cv::Mat(points2), // matches
                               CV_FM_8POINT); // 8-point method
                }
            }
        }
        return fundemental;
    }

    // Match feature points using symmetry test and RANSAC
    // returns fundemental matrix
    cv::Mat RobustMatcher::match(cv::Mat& image1,
        cv::Mat& image2, // input images
       // output matches and keypoints
       std::vector<cv::DMatch>& matches,
       std::vector<cv::KeyPoint>& keypoints1,
       std::vector<cv::KeyPoint>& keypoints2) {
     if (!matches.empty()){
         matches.erase(matches.begin(),matches.end());
     }
     // 1a. Detection of the SIFT features
     detector->detect(image1,keypoints1);
     detector->detect(image2,keypoints2);
     // 1b. Extraction of the SIFT descriptors
     /*cv::Mat img_keypoints;
     cv::Mat img_keypoints2;
     drawKeypoints( image1, keypoints1, img_keypoints, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
     drawKeypoints( image2, keypoints2, img_keypoints2, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
     //-- Show detected (drawn) keypoints
     //cv::imshow("Result keypoints detected", img_keypoints);
    // cv::imshow("Result keypoints detected", img_keypoints2);

     cv::waitKey(5000);*/

     cv::Mat descriptors1, descriptors2;
     extractor->compute(image1,keypoints1,descriptors1);
     extractor->compute(image2,keypoints2,descriptors2);
     // 2. Match the two image descriptors
     // Construction of the matcher
     //cv::BruteForceMatcher<cv::L2<float>> matcher;
     // from image 1 to image 2
     // based on k nearest neighbours (with k=2)
     std::vector<std::vector<cv::DMatch> > matches1;
     matcher->knnMatch(descriptors1,descriptors2,
         matches1, // vector of matches (up to 2 per entry)
         2);        // return 2 nearest neighbours
      // from image 2 to image 1
      // based on k nearest neighbours (with k=2)
      std::vector<std::vector<cv::DMatch> > matches2;
      matcher->knnMatch(descriptors2,descriptors1,
         matches2, // vector of matches (up to 2 per entry)
         2);        // return 2 nearest neighbours
      // 3. Remove matches for which NN ratio is
      // > than threshold
      // clean image 1 -> image 2 matches
      int removed= ratioTest(matches1);
      // clean image 2 -> image 1 matches
      removed= ratioTest(matches2);
      // 4. Remove non-symmetrical matches
      std::vector<cv::DMatch> symMatches;
      symmetryTest(matches1,matches2,symMatches);
      // 5. Validate matches using RANSAC
      cv::Mat fundemental= ransacTest(symMatches,
                  keypoints1, keypoints2, matches);
      // return the found fundemental matrix
      return fundemental;
    }




            cv::Mat img_matches;

            drawMatches(image1, keypoints_img1,image2, keypoints_img2,
                                 matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                                 vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
                    std::cout << "Number of good matching " << (int)matches.size() << "\n" << endl;

                    if ((int)matches.size() > 5 ){
                        Debug::info("Good matching !");
                    }
                    //-- Localize the object
                    std::vector<Point2f> obj;
                    std::vector<Point2f> scene;

                    for( int i = 0; i < matches.size(); i++ )
                    {
                      //-- Get the keypoints from the good matches
                      obj.push_back( keypoints_img1[ matches[i].queryIdx ].pt );
                      scene.push_back( keypoints_img2[matches[i].trainIdx ].pt );
                    }
                    cv::Mat arrayRansac;
                    std::vector<uchar> inliers(obj.size(),0);
                    Mat H = findHomography( obj, scene, CV_RANSAC,3,inliers);


                    //-- Get the corners from the image_1 ( the object to be "detected" )
                    std::vector<Point2f> obj_corners(4);
                    obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( image1.cols, 0 );
                    obj_corners[2] = cvPoint( image1.cols, image1.rows ); obj_corners[3] = cvPoint( 0, image1.rows );
                    std::vector<Point2f> scene_corners(4);


                    perspectiveTransform( obj_corners, scene_corners, H);


                    //-- Draw lines between the corners (the mapped object in the scene - image_2 )
                    line( img_matches, scene_corners[0] + Point2f( image1.cols, 0), scene_corners[1] + Point2f( image1.cols, 0), Scalar(0, 255, 0), 4 );
                    line( img_matches, scene_corners[1] + Point2f( image1.cols, 0), scene_corners[2] + Point2f( image1.cols, 0), Scalar( 0, 255, 0), 4 );
                    line( img_matches, scene_corners[2] + Point2f( image1.cols, 0), scene_corners[3] + Point2f( image1.cols, 0), Scalar( 0, 255, 0), 4 );
                    line( img_matches, scene_corners[3] + Point2f( image1.cols, 0), scene_corners[0] + Point2f( image1.cols, 0), Scalar( 0, 255, 0), 4 );



    }

</pre><code>

I have results like this (Homography is good):

But I don't understand why for some of my results where the match is good I have these kind of results (homography not seems to be good):

Can someone explain me? Maybe I have to adjust the parameters? But if I reduce constraints (rise the ratio for example) instead of have no matching between two pictures (this is good), I have a lot of matching... And I don't want to. Besides the homography doesn't work at all (I have a green line only like above).

And inversely, my robust matcher works (too) well that is to say that for differents sames picture (just rotated, differents scale etc) , that's work fine but when I have two similar image, I have no match at all...

So I don't how can I do a good computation. I'm a beginner. The robust matcher works well but for the exactly same image but for two similar images like above, it doesn't work and this is a problem.

Maybe I'm on the wrong way.

Before post this message, I of course read a lot on Stack but I didn't find the answer. (For example Here)


回答1:


It is due to how SURF descriptors work, see http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html

Basically with Droid the image is mostly flat color and it's difficult to find keypoints that are not ambiguous. With Nike, the shape is the same, but the intensity ratio is completely different in the descriptors: imagine on the left the center of a descriptor will be intensity 0 and on the right 1. Even if you normalize the intensity of the images, you're not going to have a match.

If your goal is just to match logos, I suggest you look into edge detection algorithms, like: http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html



来源:https://stackoverflow.com/questions/24681138/opencv-robustmatcher-using-findhomography

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!