问题
import numpy as np
df = spark.createDataFrame(
[(1, 1, None),
(1, 2, float(5)),
(1, 3, np.nan),
(1, 4, None),
(0, 5, float(10)),
(1, 6, float('nan')),
(0, 6, float('nan'))],
('session', "timestamp1", "id2"))
+-------+----------+----+
|session|timestamp1| id2|
+-------+----------+----+
| 1| 1|null|
| 1| 2| 5.0|
| 1| 3| NaN|
| 1| 4|null|
| 0| 5|10.0|
| 1| 6| NaN|
| 0| 6| NaN|
+-------+----------+----+
How to replace value of timestamp1 column with value 999 when session==0?
Expected output
+-------+----------+----+
|session|timestamp1| id2|
+-------+----------+----+
| 1| 1|null|
| 1| 2| 5.0|
| 1| 3| NaN|
| 1| 4|null|
| 0| 999|10.0|
| 1| 6| NaN|
| 0| 999| NaN|
+-------+----------+----+
Is it possible to do it using replace() in PySpark?
回答1:
You should be using the when
(with otherwise
) function:
from pyspark.sql.functions import when
targetDf = df.withColumn("timestamp1", \
when(df["session"] == 0, 999).otherwise(df["timestamp1"]))
来源:https://stackoverflow.com/questions/44773758/how-to-conditionally-replace-value-in-a-column-based-on-evaluation-of-expression