问题
I have a streaming JSON data, whose structure can be described with the case class below
case class Hello(A: String, B: Array[Map[String, String]])
Sample data for the same is as below
| A | B |
|-------|------------------------------------------|
| ABC | [{C:1, D:1}, {C:2, D:4}] |
| XYZ | [{C:3, D :6}, {C:9, D:11}, {C:5, D:12}] |
I want to transform it to
| A | C | D |
|-------|-----|------|
| ABC | 1 | 1 |
| ABC | 2 | 4 |
| XYZ | 3 | 6 |
| XYZ | 9 | 11 |
| XYZ | 5 | 12 |
Any help will be appreciated.
回答1:
As the question went through an evolution I leave the original answer there and this addresses the final question.
Important point, the input mentioned as follows is now catered for:
val df0 = Seq (
("ABC", List(Map("C" -> "1", "D" -> "2"), Map("C" -> "3", "D" -> "4"))),
("XYZ", List(Map("C" -> "44", "D" -> "55"), Map("C" -> "188", "D" -> "199"), Map("C" -> "88", "D" -> "99")))
)
.toDF("A", "B")
Can also be done like this, but then the script needs to be modified for this, although trivial:
val df0 = Seq (
("ABC", List(Map("C" -> "1", "D" -> "2"))),
("ABC", List(Map("C" -> "44", "D" -> "55"))),
("XYZ", List(Map("C" -> "11", "D" -> "22")))
)
.toDF("A", "B")
Following on from requested format then:
val df1 = df0.select($"A", explode($"B")).toDF("A", "Bn")
val df2 = df1.withColumn("SeqNum", monotonically_increasing_id()).toDF("A", "Bn", "SeqNum")
val df3 = df2.select($"A", explode($"Bn"), $"SeqNum").toDF("A", "B", "C", "SeqNum")
val df4 = df3.withColumn("dummy", concat( $"SeqNum", lit("||"), $"A"))
val df5 = df4.select($"dummy", $"B", $"C").groupBy("dummy").pivot("B").agg(first($"C"))
val df6 = df5.withColumn("A", substring_index(col("dummy"), "||", -1)).drop("dummy")
df6.show(false)
returns:
+---+---+---+
|C |D |A |
+---+---+---+
|3 |4 |ABC|
|1 |2 |ABC|
|88 |99 |XYZ|
|188|199|XYZ|
|44 |55 |XYZ|
+---+---+---+
You may re-sequence columns.
回答2:
Not sure if the best approach, but in a 2 step process it can be done. Leaving your case class aside, the following:
import org.apache.spark.sql.functions._
//case class ComponentPlacement(A: String, B: Array[Map[String, String]])
val df = Seq (
("ABC", List(Map("C" -> "1", "D" -> "2"))),
("XYZ", List(Map("C" -> "11", "D" -> "22")))
).toDF("A", "B")
val df2 = df.select($"A", explode($"B")).toDF("A", "Bn")
val df3 = df2.select($"A", explode($"Bn")).toDF("A", "B", "C")
val df4 = df3.select($"A", $"B", $"C").groupBy("A").pivot("B").agg(first($"C"))
returns:
+---+---+---+
| A| C| D|
+---+---+---+
|XYZ| 11| 22|
|ABC| 1| 2|
+---+---+---+
来源:https://stackoverflow.com/questions/53090467/convert-an-spark-dataframe-columns-with-an-array-of-json-objects-to-multiple-row