ValueError: Operation u'tpu_140462710602256/VarIsInitializedOp' has been marked as not fetchable

萝らか妹 提交于 2019-12-31 02:00:33

问题


The code works fine on GPU and CPU.But when I use keras_to_tpu_model function to make the model able to run on TPU, the error occurred.

This is the full output on colab:https://colab.research.google.com/gist/WangHexie/2252beb26f16354cb6e9ba2639970e5b/tpu-error.ipynb
Change runtype to TPU,I think this can be reproduced.

Code on github:https://github.com/WangHexie/DHNE/blob/master/src/hypergraph_embedding.py#L60

You can test the code on GPU by changing to the gpu branch.

Traceback

    Traceback (most recent call last):
  File "src/hypergraph_embedding.py", line 158, in <module>
    h.train(dataset)
  File "src/hypergraph_embedding.py", line 75, in train
    epochs=self.options.epochs_to_train, verbose=1)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/engine/training.py", line 2177, in fit_generator
    initial_epoch=initial_epoch)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/engine/training_generator.py", line 176, in fit_generator
    x, y, sample_weight=sample_weight, class_weight=class_weight)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/engine/training.py", line 1940, in train_on_batch
    outputs = self.train_function(ins)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py", line 1238, in __call__
    infeed_manager)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py", line 1143, in _tpu_model_ops_for_input_specs
    infeed_manager)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py", line 1053, in _specialize_model
    _model_fn, inputs=[[]] * self._tpu_assignment.num_towers)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/tpu/python/tpu/tpu.py", line 687, in split_compile_and_replicate
    outputs = computation(*computation_inputs)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py", line 959, in _model_fn
    self.model.cpu_optimizer)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py", line 378, in _clone_optimizer
    config = optimizer.get_config()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/optimizers.py", line 275, in get_config
    'lr': float(K.get_value(self.lr)),
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/backend.py", line 2709, in get_value
    return x.eval(session=get_session())
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/backend.py", line 469, in get_session
    _initialize_variables(session)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/backend.py", line 731, in _initialize_variables
    [variables_module.is_variable_initialized(v) for v in candidate_vars])
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 929, in run
    run_metadata_ptr)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1137, in _run
    self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 484, in __init__
    self._assert_fetchable(graph, fetch.op)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 497, in _assert_fetchable
    'Operation %r has been marked as not fetchable.' % op.name)
ValueError: Operation u'tpu_140276544043536/VarIsInitializedOp' has been marked as not fetchable.

回答1:


I have a same issue which confuses me two days. I find a solution is that just switch to using tf.train.RMSPropOptimizer instead of using RMSProp from tensorflow.keras.optimizers.



来源:https://stackoverflow.com/questions/52940552/valueerror-operation-utpu-140462710602256-varisinitializedop-has-been-marked

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!