How can I write results of JavaPairDStream into output kafka topic on Spark Streaming?

青春壹個敷衍的年華 提交于 2019-12-30 07:41:10

问题


I'm looking for a way to write a Dstream in an output kafka topic, only when the micro-batch RDDs spit out something.

I'm using Spark Streaming and spark-streaming-kafka connector in Java8 (both latest versions)

I cannot figure out.

Thanks for the help.


回答1:


if dStream contains data that you want to send to Kafka:

dStream.foreachRDD(rdd -> {
    rdd.foreachPartition(iter ->{
        Producer producer = createKafkaProducer();  
        while (iter.hasNext()){
               sendToKafka(producer, iter.next())
        }
    }

});

So, you create one producer per each RDD partition.




回答2:


In my example I want to send events took from a specific kafka topic to another one. I do a simple wordcount. That means, I take data from kafka input topic, count them and output them in a output kafka topic. Don't forget the goal is to write results of JavaPairDStream into output kafka topic using Spark Streaming.

//Spark Configuration
SparkConf sparkConf = new SparkConf().setAppName("SendEventsToKafka");
String brokerUrl = "locahost:9092"
String inputTopic = "receiverTopic";
String outputTopic = "producerTopic";

//Create the java streaming context
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(2));

//Prepare the list of topics we listen for
Set<String> topicList = new TreeSet<>();
topicList.add(inputTopic);

//Kafka direct stream parameters
Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", brokerUrl);
kafkaParams.put("group.id", "kafka-cassandra" + new SecureRandom().nextInt(100));
kafkaParams.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
kafkaParams.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

//Kafka output topic specific properties
Properties props = new Properties();
props.put("bootstrap.servers", brokerUrl);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("acks", "1");
props.put("retries", "3");
props.put("linger.ms", 5);

//Here we create a direct stream for kafka input data.
final JavaInputDStream<ConsumerRecord<String, String>> messages = KafkaUtils.createDirectStream(jssc,
        LocationStrategies.PreferConsistent(),
        ConsumerStrategies.<String, String>Subscribe(topicList, kafkaParams));


JavaPairDStream<String, String> results = messages
        .mapToPair(new PairFunction<ConsumerRecord<String, String>, String, String>() {
            @Override
            public Tuple2<String, String> call(ConsumerRecord<String, String> record) {
                return new Tuple2<>(record.key(), record.value());
            }
        });

JavaDStream<String> lines = results.map(new Function<Tuple2<String, String>, String>() {
    @Override
    public String call(Tuple2<String, String> tuple2) {
        return tuple2._2();
    }
});

JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
    @Override
    public Iterator<String> call(String x) {
        log.info("Line retrieved {}", x);
        return Arrays.asList(SPACE.split(x)).iterator();
    }
});

JavaPairDStream<String, Integer> wordCounts = words.mapToPair(new PairFunction<String, String, Integer>() {
    @Override
    public Tuple2<String, Integer> call(String s) {
        log.info("Word to count {}", s);
        return new Tuple2<>(s, 1);
    }
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
    @Override
    public Integer call(Integer i1, Integer i2) {
        log.info("Count with reduceByKey {}", i1 + i2);
        return i1 + i2;
    }
});

//Here we iterrate over the JavaPairDStream to write words and their count into kafka
wordCounts.foreachRDD(new VoidFunction<JavaPairRDD<String, Integer>>() {
    @Override
    public void call(JavaPairRDD<String, Integer> arg0) throws Exception {
        Map<String, Integer> wordCountMap = arg0.collectAsMap();
        List<WordOccurence> topicList = new ArrayList<>();
        for (String key : wordCountMap.keySet()) {
             //Here we send event to kafka output topic
             publishToKafka(key, wordCountMap.get(key), outputTopic);
        }
        JavaRDD<WordOccurence> WordOccurenceRDD = jssc.sparkContext().parallelize(topicList);
        CassandraJavaUtil.javaFunctions(WordOccurenceRDD)
                .writerBuilder(keyspace, table, CassandraJavaUtil.mapToRow(WordOccurence.class))
                .saveToCassandra();
        log.info("Words successfully added : {}, keyspace {}, table {}", words, keyspace, table);
    }
});

jssc.start();
jssc.awaitTermination();

wordCounts variable is of type JavaPairDStream<String, Integer>, I just ierrate using foreachRDD and write into kafka using a specific function:

public static void publishToKafka(String word, Long count, String topic, Properties props) {
    KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);

    try {
        ObjectMapper mapper = new ObjectMapper();
        String jsonInString = mapper.writeValueAsString(word + " " + count);
        String event = "{\"word_stats\":" + jsonInString + "}";
        log.info("Message to send to kafka : {}", event);
        producer.send(new ProducerRecord<String, String>(topic, event));
        log.info("Event : " + event + " published successfully to kafka!!");
    } catch (Exception e) {
        log.error("Problem while publishing the event to kafka : " + e.getMessage());
    }
    producer.close();
}

Hope that helps!



来源:https://stackoverflow.com/questions/42923515/how-can-i-write-results-of-javapairdstream-into-output-kafka-topic-on-spark-stre

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!