Pyspark convert a standard list to data frame [duplicate]

走远了吗. 提交于 2019-12-30 00:35:49

问题


The case is really simple, I need to convert a python list into data frame with following code

from pyspark.sql.types import StructType
from pyspark.sql.types import StructField
from pyspark.sql.types import StringType, IntegerType

schema = StructType([StructField("value", IntegerType(), True)])
my_list = [1, 2, 3, 4]
rdd = sc.parallelize(my_list)
df = sqlContext.createDataFrame(rdd, schema)

df.show()

it failed with following error:

    raise TypeError("StructType can not accept object %r in type %s" % (obj, type(obj)))
TypeError: StructType can not accept object 1 in type <class 'int'>

回答1:


This solution is also an approach that uses less code, avoids serialization to RDD and is likely easier to understand:

from pyspark.sql.types import IntegerType

# notice the variable name (more below)
mylist = [1, 2, 3, 4]

# notice the parens after the type name
spark.createDataFrame(mylist, IntegerType()).show()

NOTE: About naming your variable list: the term list is a Python builtin function and as such, it is strongly recommended that we avoid using builtin names as the name/label for our variables because we end up overwriting things like the list() function. When prototyping something fast and dirty, a number of folks use something like: mylist.




回答2:


Please see the below code:

    from pyspark.sql import Row
    li=[1,2,3,4]
    rdd1 = sc.parallelize(li)
    row_rdd = rdd1.map(lambda x: Row(x))
    df=sqlContext.createDataFrame(row_rdd,['numbers']).show()

df

+-------+
|numbers|
+-------+
|      1|
|      2|
|      3|
|      4|
+-------+


来源:https://stackoverflow.com/questions/48448473/pyspark-convert-a-standard-list-to-data-frame

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!