Scala Spark - split vector column into separate columns in a Spark DataFrame

心已入冬 提交于 2019-12-29 08:01:47

问题


I have a Spark DataFrame where I have a column with Vector values. The vector values are all n-dimensional, aka with the same length. I also have a list of column names Array("f1", "f2", "f3", ..., "fn"), each corresponds to one element in the vector.

some_columns... | Features
      ...       | [0,1,0,..., 0]

to

some_columns... | f1 | f2 | f3 | ... | fn

      ...       | 0  | 1  | 0  | ... | 0

What is the best way to achieve this? I thought of one way which is to create a new DataFrame with createDataFrame(Row(Features), featureNameList) and then join with the old one, but it requires spark context to use createDataFrame. I only want to transform the existing data frame. I also know .withColumn("fi", value) but what do I do if n is large?

I'm new to Scala and Spark and couldn't find any good examples for this. I think this can be a common task. My particular case is that I used the CountVectorizer and wanted to recover each column individually for better readability instead of only having the vector result.


回答1:


One way could be to convert the vector column to an array<double> and then using getItem to extract individual elements.

import org.apache.spark.sql.functions._
import org.apache.spark.ml._

val df = Seq( (1 , linalg.Vectors.dense(1,0,1,1,0) ) ).toDF("id", "features")
//df: org.apache.spark.sql.DataFrame = [id: int, features: vector]

df.show
//+---+---------------------+
//|id |features             |
//+---+---------------------+
//|1  |[1.0,0.0,1.0,1.0,0.0]|
//+---+---------------------+

// A UDF to convert VectorUDT to ArrayType
val vecToArray = udf( (xs: linalg.Vector) => xs.toArray )

// Add a ArrayType Column   
val dfArr = df.withColumn("featuresArr" , vecToArray($"features") )

// Array of element names that need to be fetched
// ArrayIndexOutOfBounds is not checked.
// sizeof `elements` should be equal to the number of entries in column `features`
val elements = Array("f1", "f2", "f3", "f4", "f5")

// Create a SQL-like expression using the array 
val sqlExpr = elements.zipWithIndex.map{ case (alias, idx) => col("featuresArr").getItem(idx).as(alias) }

// Extract Elements from dfArr    
dfArr.select(sqlExpr : _*).show
//+---+---+---+---+---+
//| f1| f2| f3| f4| f5|
//+---+---+---+---+---+
//|1.0|0.0|1.0|1.0|0.0|
//+---+---+---+---+---+


来源:https://stackoverflow.com/questions/49911608/scala-spark-split-vector-column-into-separate-columns-in-a-spark-dataframe

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!