Data Augmentation Image Data Generator Keras Semantic Segmentation

天涯浪子 提交于 2019-12-29 03:04:53

问题


I'm fitting full convolutional network on some image data for semantic segmentation using Keras. However, I'm having some problems overfitting. I don't have that much data and I want to do data augmentation. However, as I want to do pixel-wise classification, I need any augmentations like flips, rotations, and shifts to apply to both feature images and the label images. Ideally I'd like to use the Keras ImageDataGenerator for on-the-fly transformations. However, as far as I can tell, you cannot do equivalent transformations on both the feature and label data.

Does anyone know if this is the case and if not, does anyone have any ideas? Otherwise, I'll use other tools to create a larger dataset and just feed it in all at once.

Thanks!


回答1:


There are works on extending ImageDataGenerator to be more flexible for exactly these type of cases (see in this issue on Github for examples).

Additionally, as mentioned by Mikael Rousson in the comments, you can easily create your own version of ImageDataGenerator yourself, while leveraging many of its built-in functions to make it easier. Here is an example code I've used for an image denoising problem, where I use random crops + additive noise to generate clean and noisy image pairs on the fly. You could easily modify this to add other types of augmentations. After which, you can use Model.fit_generator to train using these methods.

from keras.preprocessing.image import load_img, img_to_array, list_pictures

def random_crop(image, crop_size):
    height, width = image.shape[1:]
    dy, dx = crop_size
    if width < dx or height < dy:
        return None
    x = np.random.randint(0, width - dx + 1)
    y = np.random.randint(0, height - dy + 1)
    return image[:, y:(y+dy), x:(x+dx)]

def image_generator(list_of_files, crop_size, to_grayscale=True, scale=1, shift=0):
    while True:
        filename = np.random.choice(list_of_files)
        try:
            img = img_to_array(load_img(filename, to_grayscale))
        except:
            return
        cropped_img = random_crop(img, crop_size)
        if cropped_img is None:
            continue
        yield scale * cropped_img - shift
def corrupted_training_pair(images, sigma):
    for img in images:
        target = img
        if sigma > 0:
            source = img + np.random.normal(0, sigma, img.shape)/255.0
        else:
            source = img
        yield (source, target)
def group_by_batch(dataset, batch_size):
    while True:
        try:
            sources, targets = zip(*[next(dataset) for i in xrange(batch_size)])
            batch = (np.stack(sources), np.stack(targets))
            yield batch
        except:
            return
def load_dataset(directory, crop_size, sigma, batch_size):
    files = list_pictures(directory)
    generator = image_generator(files, crop_size, scale=1/255.0, shift=0.5)
    generator = corrupted_training_pair(generator, sigma)
    generator = group_by_batch(generator, batch_size)
    return generator

You can then use the above like so:

train_set = load_dataset('images/train', (patch_height, patch_width), noise_sigma, batch_size)
val_set = load_dataset('images/val', (patch_height, patch_width), noise_sigma, batch_size)
model.fit_generator(train_set, samples_per_epoch=batch_size * 1000, nb_epoch=nb_epoch, validation_data=val_set, nb_val_samples=1000)



回答2:


Yes you can. Here's an example from Keras's docs. You zip together two generators seeded with the same seeds and the fit_generator them. https://keras.io/preprocessing/image/

# we create two instances with the same arguments 
data_gen_args = dict(featurewise_center=True,
                     featurewise_std_normalization=True,
                     rotation_range=90.,
                     width_shift_range=0.1,
                     height_shift_range=0.1,
                     zoom_range=0.2) 
image_datagen = ImageDataGenerator(**data_gen_args) 
mask_datagen = ImageDataGenerator(**data_gen_args)

# Provide the same seed and keyword arguments to the fit and flow methods seed = 1 
image_datagen.fit(images, augment=True, seed=seed) 
mask_datagen.fit(masks, augment=True, seed=seed)

image_generator = image_datagen.flow_from_directory(
    'data/images',
    class_mode=None,
    seed=seed)

mask_generator = mask_datagen.flow_from_directory(
    'data/masks',
    class_mode=None,
    seed=seed)

# combine generators into one which yields image and masks 
train_generator = zip(image_generator, mask_generator)

model.fit_generator(
    train_generator,
    samples_per_epoch=2000,
    nb_epoch=50)


来源:https://stackoverflow.com/questions/38155836/data-augmentation-image-data-generator-keras-semantic-segmentation

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!