西瓜书第六章 支持向量机

不羁的心 提交于 2019-12-28 03:24:50

6.1 间隔与支持向量

     分类学习最基本的想法就是基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开并选择泛化能力最强的划分超平面。划分超平面可通过如下线性方程描述,其中 W=(w_1;w_2;…;w_d)为法向量,决定了超平面的方向,b为位移项,决定了超平面与原点之间的距离。

image

     样本空间中,任意点 x 到超平面(w,b)的距离可写为

image

    假设超平面(w,b)能将训练样本正确分类,即对于(x_i,y_i)∈D,若y_i=+1,则有 wTx_i+b>0;若y_i=-1,则有wTx_i+b<0。令

image

    距离超平面最近的这几个训练样本点使得上式的等号成立,称为“支持向量”,两个异类支持向量到超平面的距离之和为

image

    被称为“间隔”margin,欲找到具有“最大间隔”的划分超平面,也就是找到约束参数w和b,使得γ最大,即:

image

    支持向量机(support vector machine)SVM的基本型如下:

image

 

6.2 对偶问题

   感觉学习知识不是一味的抄书转载别人的博客,好像博客转到自己名下了,就是学会了,要学会总结啊亲~

   毕业要求变高,一篇小论文不够啊~!

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!