python函数-迭代器&生成器
一、迭代器
1 可迭代协议
- 迭代:就是类似for循环,将某个数据集内的数据可以“一个挨着一个取出来”
- 可迭代协议:
① 协议内容:内部实现__iter__方法
② 验证方法:dir()方法。通过dir()方法查看是否含有__iter__方法
③ __iter__方法的作用:可迭代的数据类型执行__iter__方法后会生成一个迭代器对象
print([1,2].__iter__()) 结果 <list_iterator object at 0x1024784a8>
2 迭代器协议
1 引出
''' dir([1,2].__iter__())是列表迭代器中实现的所有方法,dir([1,2])是列表中实现的所有方法,都是以列表的形式返回给我们的,为了看的更清楚,我们分别把他们转换成集合, 然后取差集。 '''#实现的所有方法 print(dir([1,2].__iter__())) print(dir([1,2]))#取差集 print(set(dir([1,2].__iter__()))-set(dir([1,2]))) 结果: {'__length_hint__', '__next__', '__setstate__'}
我们看到在列表迭代器中多了三个方法,那么这三个方法都分别做了什么事呢?
iter_l = [1,2,3,4,5,6].__iter__() #获取迭代器中元素的长度 print(iter_l.__length_hint__()) #根据索引值指定从哪里开始迭代 print('*',iter_l.__setstate__(4)) #一个一个的取值 print('**',iter_l.__next__()) print('***',iter_l.__next__())
在这三个方法中,能让我们一个一个取值的神奇方法是谁???答案就是__next__
在for循环中,就是在内部调用了__next__方法才能取到一个一个的值。那接下来我们就用迭代器的 next方法来写一个不依赖for的遍历。
l = [1,2,3,4] l_iter = l.__iter__() item = l_iter.__next__() print(item) item = l_iter.__next__() print(item) item = l_iter.__next__() print(item) item = l_iter.__next__() print(item) item = l_iter.__next__() print(item)
这是一段会报错的代码,如果我们一直取next取到迭代器里已经没有元素了,就会抛出一个异常 StopIteration,告诉我们,列表中已经没有有效的元素了。这个时候,我们就要使用异常处理机制来把这个异常处理掉。
l = [1,2,3,4] l_iter = l.__iter__() while True: try: item = l_iter.__next__() print(item) except StopIteration: break
迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。
注意: range()
print('__next__' in dir(range(12))) #查看'__next__'是不是在range()方法执行之后内部是否有__next__ print('__iter__' in dir(range(12))) #查看'__next__'是不是在range()方法执行之后内部是否有__next__ from collections import Iterator print(isinstance(range(100000000),Iterator)) #验证range执行之后得到的结果不是一个迭代器
range()是一个可迭代的,不是一个迭代器
二、生成器
我们知道的迭代器有两种:一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的,迭代器有的好处是可以节省内存。
如果在某些情况下,我们也需要节省内存,就只能自己写。我们自己写的这个能实现迭代器功能的东西就叫生成器。
1.初识生成器
Python中提供的生成器:
- 生成器函数:常规的函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从他离开的地方继续执行。
- 生成器表达式:类似于列表推导,但是,生成器返回按需生产结果的一个对象,而不是一次构建一个结果列表
生成器的本质:
本质:迭代器(就是自带了__iter__方法和__next__方法,不需要我们去实现)
特点:惰性运算,开发者自定义
2.生成器函数
一个含有yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值,但是yield又不同于return,return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。
import time def genrator_fun1(): a = 1 print('现在定义了a变量') yield a b = 2 print('现在又定义了b变量') yield b g1 = genrator_fun1() print('g1 : ',g1) #打印g1可以发现g1就是一个生成器 print('-'*20) #我是华丽的分割线 print(next(g1)) time.sleep(1) #sleep一秒看清执行过程 print(next(g1))
生成器有什么好处呢?就是不会一下子在内存中生成太多数据
假如我想让工厂给学生做校服,生产2000000件衣服,我和工厂一说,工厂应该是先答应下来,然后再去生产,我可以一件一件的要,也可以根据学生一批一批的找工厂拿。
而不能是一说要生产2000000件衣服,工厂就先去做生产2000000件衣服,等回来做好了,学生都毕业了。。。
#初识生成器二 def produce(): """生产衣服""" for i in range(2000000): yield "生产了第%s件衣服"%i product_g = produce() print(product_g.__next__()) #要一件衣服 print(product_g.__next__()) #再要一件衣服 print(product_g.__next__()) #再要一件衣服 num = 0 for i in product_g: #要一批衣服,比如5件 print(i) num +=1 if num == 5: break #到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。 #剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿
import time def tail(filename): f = open(filename) f.seek(0, 2) #从文件末尾算起 while True: line = f.readline() # 读取文件中新的文本行 if not line: time.sleep(0.1) continue yield line tail_g = tail('tmp') for line in tail_g: print(line)
-
send
def generator(): print(123) content = yield 1 print('=======',content) print(456) yield2 g = generator() ret = g.__next__() print('***',ret) ret = g.send('hello') #send的效果和next一样 print('***',ret) #send 获取下一个值的效果和next基本一致 #只是在获取下一个值的时候,给上一yield的位置传递一个数据 #使用send的注意事项 # 第一次使用生成器的时候 是用next获取下一个值 # 最后一个yield不能接受外部的值
def averager(): total = 0.0 count = 0 average = None while True: term = yield average total += term count += 1 average = total/count g_avg = averager() next(g_avg) print(g_avg.send(10)) print(g_avg.send(30)) print(g_avg.send(5))
def init(func): #在调用被装饰生成器函数的时候首先用next激活生成器 def inner(*args,**kwargs): g = func(*args,**kwargs) next(g) return g return inner @init def averager(): total = 0.0 count = 0 average = None while True: term = yield average total += term count += 1 average = total/count g_avg = averager() # next(g_avg) 在装饰器中执行了next方法 print(g_avg.send(10)) print(g_avg.send(30)) print(g_avg.send(5))
- yield from
def gen1(): for c in 'AB': yield c for i in range(3): yield i print(list(gen1())) def gen2(): yield from 'AB' yield from range(3) print(list(gen2()))
三、列表推导式和生成器表达式
引出:
egg_list=['鸡蛋%s' %i for i in range(10)] #列表解析 print(egg_list) >>>['鸡蛋0', '鸡蛋1', '鸡蛋2', '鸡蛋3', '鸡蛋4', '鸡蛋5', '鸡蛋6', '鸡蛋7', '鸡蛋8', '鸡蛋9'] #峰哥瞅着alex下的一筐鸡蛋,捂住了鼻子,说了句:哥,你还是给我只母鸡吧,我自己回家下 laomuji=('鸡蛋%s' %i for i in range(10))#生成器表达式 print(laomuji) print(next(laomuji)) #next本质就是调用__next__ print(laomuji.__next__()) print(next(laomuji)) >>><generator object <genexpr> at 0x0000000001E00DB0> 鸡蛋0 鸡蛋1 鸡蛋2
总结:
1.把列表解析的 [ ] 换成( )得到的就是生成器表达式
2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存
3.Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,所以,我们可以直接这样计算一系列值的和:
sum(x ** 2 for x in range(4))
而不用多此一举的先构造一个列表:
sum([x ** 2 for x in range(4)])
更多精彩请见——迭代器生成器专题:http://www.cnblogs.com/a438842265/p/8551306.html
来源:https://www.cnblogs.com/a438842265/p/8545906.html