B1001 害死人不偿命的(3n+1)猜想 (15分)

蹲街弑〆低调 提交于 2019-12-27 02:20:21

【题目描述】

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

【输入格式】

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

【输出格式】

输出从 n 计算到 1 需要的步数。

【输入样例】

3

【输出样例】

5

【代码】

#include<stdio.h>
//B1001
//2019-12-26
//用时:2min
int main(){
    int n,cnt=0;
    scanf("%d",&n);
    while(n!=1){
        if(n%2==0){
           n/=2;
        }else{
           n=(3*n+1)/2;
        }
        cnt++;
    }
    printf("%d",cnt);
    return 0;
}

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!