问题
I'm trying to concat multiples pandas.DataFrame to be saved in a mongodb in just one collection, all the dataframes have the same index/columns and I wanted to save it, in just one document, using to_json() method. Having all the cells of the dataframe as dicts, its probably a good approach. To accomplish that I wanted to concat the dataframes like this:
df1:
index A B
1 'A1' 'B1'
2 'A2' 'B2'
3 'A3' 'B3'
df2:
index A B
1 'a1' 'b1'
2 'a2' 'b2'
3 'a3' 'b3'
Expected solution:
df_sol:
index A B
1 {d1:'A1', d2:'a1'} {d1:'B1', d2:'b1'}
2 {d1:'A2', d2:'a2'} {d1:'B2', d2:'b2'}
3 {d1:'A3', d2:'a3'} {d1:'B3', d2:'b3'}
the aproach that im using is
pd.Panel(dict(d1=df1, d2=df2)).apply(pd.Series.to_dict, 0)
A B
index
1 {'d1': 'A1', 'd2': 'a1'} {'d1': 'B1', 'd2': 'b1'}
2 {'d1': 'A2', 'd2': 'a2'} {'d1': 'B2', 'd2': 'b2'}
3 {'d1': 'A3', 'd2': 'a3'} {'d1': 'B3', 'd2': 'b3'}
but pd.Panel
its deprecated DeprecationWarning : Panel is deprecated and will be removed in a future version.
its there a workaround using just pandas
?
thanks!
Original Question
回答1:
Solutionpd.concat
+ other stuff
pd.Series(
pd.concat([df1, df2], axis=1, keys=['d1', 'd2']).stack().to_dict('index')
).unstack()
A B
1 {'d1': ''A1'', 'd2': ''a1''} {'d1': ''B1'', 'd2': ''b1''}
2 {'d1': ''A2'', 'd2': ''a2''} {'d1': ''B2'', 'd2': ''b2''}
3 {'d1': ''A3'', 'd2': ''a3''} {'d1': ''B3'', 'd2': ''b3''}
Explanation
I want to get [1, 2, 3]
and ['A', 'B']
into the index and ['d1', 'd2']
as the columns.
I start with pd.concat
pd.concat([df1, df2], axis=1, keys=['d1', 'd2'])
d1 d2
A B A B
index
1 'A1' 'B1' 'a1' 'b1'
2 'A2' 'B2' 'a2' 'b2'
3 'A3' 'B3' 'a3' 'b3'
Which almost gets me there. If I follow that with a stack
, it will drop the last level of the columns into the last level of the index:
pd.concat([df1, df2], axis=1, keys=['d1', 'd2']).stack()
d1 d2
index
1 A 'A1' 'a1'
B 'B1' 'b1'
2 A 'A2' 'a2'
B 'B2' 'b2'
3 A 'A3' 'a3'
B 'B3' 'b3'
And this is what I want. From here I can use .to_dict('index')
pd.concat([df1, df2], axis=1, keys=['d1', 'd2']).stack().to_dict('index')
{(1, 'A'): {'d1': "'A1'", 'd2': "'a1'"},
(1, 'B'): {'d1': "'B1'", 'd2': "'b1'"},
(2, 'A'): {'d1': "'A2'", 'd2': "'a2'"},
(2, 'B'): {'d1': "'B2'", 'd2': "'b2'"},
(3, 'A'): {'d1': "'A3'", 'd2': "'a3'"},
(3, 'B'): {'d1': "'B3'", 'd2': "'b3'"}}
And pass that back to the pd.Series
constructor to get a series of dictionaries.
pd.Series(
pd.concat([df1, df2], axis=1, keys=['d1', 'd2']).stack().to_dict('index')
)
1 A {'d1': ''A1'', 'd2': ''a1''}
B {'d1': ''B1'', 'd2': ''b1''}
2 A {'d1': ''A2'', 'd2': ''a2''}
B {'d1': ''B2'', 'd2': ''b2''}
3 A {'d1': ''A3'', 'd2': ''a3''}
B {'d1': ''B3'', 'd2': ''b3''}
dtype: object
The only thing left to do is unstack
which I show in the solution above.
回答2:
This is a completely different concept that I am having fun with.
You can create a subclass of dict
where we define addition to be a dictionary merge.
from cytoolz.dicttoolz import merge
class mdict(dict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __add__(self, other):
return(mdict(merge(self, other)))
df1.applymap(lambda x: mdict(d1=x)) + df2.applymap(lambda x: mdict(d2=x))
A B
index
1 {'d1': ''A1'', 'd2': ''a1''} {'d1': ''B1'', 'd2': ''b1''}
2 {'d1': ''A2'', 'd2': ''a2''} {'d1': ''B2'', 'd2': ''b2''}
3 {'d1': ''A3'', 'd2': ''a3''} {'d1': ''B3'', 'd2': ''b3''}
来源:https://stackoverflow.com/questions/46591824/combine-two-pandas-dataframe-into-one-dataframe-dict-type-cell-pd-panel-depre