问题
How to identify when the KTable materialization to a topic has completed?
For e.g. assume KTable has few million rows. Pseudo code below:
KTable<String, String> kt = kgroupedStream.groupByKey(..).reduce(..); //Assume this produces few million rows
At somepoint in time, I wanted to schedule a thread to invoke the following, that writes to the topic: kt.toStream().to("output_topic_name");
I wanted to ensure all the data is written as part of the above invoke. Also, once the above "to" method is invoked, can it be invoked in the next schedule OR will the first invoke always stay active?
Follow-up Question:
Constraints
1) Ok, I see that the kstream and the ktable are unbounded/infinite once the kafkastream is kicked off. However, wouldn't ktable materialization (to a compacted topic) send multiple entries for the same key within a specified period.
So, unless the compaction process attempts to clean these and retain only the latest one, the downstream application will consume all available entries for the same key querying from the topic, causing duplicates. Even if the compaction process does some level of cleanup, it is always not possible that at a given point in time, there are some keys that have more than one entries as the compaction process is catching up.
I assume KTable will only have one record for a given key in the RocksDB. If we have a way to schedule the materialization, that will help to avoid the duplicates. Also, reduce the amount of data being persisted in topic (increasing the storage), increase in the network traffic, additional overhead to the compaction process to clean it up.
2) Perhaps a ReadOnlyKeyValueStore would allow a controlled retrieval from the store, but it still lacks the way to schedule the retrieval of key, value and write to a topic, which requires additional coding.
Can the API be improved to allow a controlled materialization?
回答1:
A KTable materialization never finishes and you cannot "invoke" a to()
either.
When you use the Streams API, you "plug together" a DAG of operators. The actual method calls, don't trigger any computation but modify the DAG of operators.
Only after you start the computation via KafkaStreams#start()
data is processed. Note, that all operators that you specified will run continuously and concurrently after the computation gets started.
There is no "end of a computation" because the input is expected to be unbounded/infinite as upstream application can write new data into the input topics at any time. Thus, your program never terminates by itself. If required, you can stop the computation via KafkaStreams#close()
though.
During execution, you cannot change the DAG. If you want to change it, you need to stop the computation and create a new KafkaStreams
instance that takes the modified DAG as input
Follow up:
Yes. You have to think of a KTable as a "versioned table" that evolved over time when entries are updated. Thus, all updates are written to the changelog topic and sent downstream as change-records (note, that KTables do some caching, too, to "de-duplicate" consecutive updates to the same key: cf. https://docs.confluent.io/current/streams/developer-guide/memory-mgmt.html).
will consume all available entries for the same key querying from the topic, causing duplicates.
I would not consider those as "duplicates" but as updates. And yes, the application needs to be able to handle those updates correctly.
if we have a way to schedule the materialization, that will help to avoid the duplicates.
Materialization is a continuous process and the KTable is updated whenever new input records are available in the input topic and processed. Thus, at any point in time there might be an update for a specific key. Thus, even if you have full control when to send updates to the changelog topic and/or downstream, there might be a new update later on. That is the nature of stream processing.
Also, reduce the amount of data being persisted in topic (increasing the storage), increase in the network traffic, additional overhead to the compaction process to clean it up.
As mentioned above, caching is used to save resources.
Can the API be improved to allow a controlled materialization?
If the provided KTable semantics don't meet your requirement, you can always write a custom operator as a Processor
or Transformer
, attach a key-value store to it, and implement whatever you need.
来源:https://stackoverflow.com/questions/50440550/kafka-stream-ktable-materialization