Conditional count of cumulative sum Dataframe - Loop through columns

≯℡__Kan透↙ 提交于 2019-12-24 01:27:31

问题


Im trying to compute a cumulative sum with a reset within a dataframe, based on the sign of each values. The idea is to the same exercise for each column separately.

For example, let's assume I have the following dataframe:

df = pd.DataFrame({'A': [1,1,1,-1,-1,1,1,1,1,-1,-1,-1],'B':[1,1,-1,-1,-1,1,1,1,-1,-1,-1,1]},index=[0, 1, 2, 3,4,5,6,7,8,9,10,11])

For each column, I want to compute the cumulative sum until I find a change in sign; in which case, the sum should be reset to 1. For the example above, I am expecting the following result:

df1=pd.DataFrame({'A_cumcount':[1,2,3,1,2,1,2,3,4,1,2,3],'B_cumcount':[1,2,1,2,3,1,2,3,1,2,3,4],index=[0,1,2,3,4,5,6,7,8,9,10,11]})

Similar issue has been discussed here: Pandas: conditional rolling count

I have tried the following code:

nb_col=len(df.columns) #number of columns in dataframe


for i in range(0,int(nb_col)): #Loop through the number of columns in the dataframe

    name=df.columns[i] #read the column name
    name=name+'_cumcount' 


    #add column for the calculation
    df=df.reindex(columns=np.append(df.columns.values, [name])) 

    df=df[df.columns[nb_col+i]]=df.groupby((df[df.columns[i]] != df[df.columns[i]].shift(1)).cumsum()).cumcount()+1

My question is, is there a way to avoid this for loop? So I can avoid appending a new column each time and make the computation faster. Thank you

Answers received (all working fine): From @nixon df.apply(lambda x: x.groupby(x.diff().ne(0).cumsum()).cumcount()+1).add_suffix('_cumcount')

From @jezrael df1 = (df.apply(lambda x: x.groupby((x != x.shift()).cumsum()).cumcount() + 1).add_suffix('_cumcount'))

From @Scott Boston:

df.apply(lambda x: x.groupby(x.diff().bfill().ne(0).cumsum()).cumcount() + 1)

回答1:


I think in pandas need loop, e.g. by apply:

df1 = (df.apply(lambda x: x.groupby((x != x.shift()).cumsum()).cumcount() + 1)
         .add_suffix('_cumcount'))
print (df1)
    A_cumcount  B_cumcount
0            1           1
1            2           2
2            3           1
3            1           2
4            2           3
5            1           1
6            2           2
7            3           3
8            4           1
9            1           2
10           2           3
11           3           1



回答2:


You can try this:

df.apply(lambda x: x.groupby(x.diff().bfill().ne(0).cumsum()).cumcount() + 1)

Output:

    A  B
0   1  1
1   2  2
2   3  1
3   1  2
4   2  3
5   1  1
6   2  2
7   3  3
8   4  1
9   1  2
10  2  3
11  3  1



回答3:


You can start by grouping by where the changes in the sequence occur by doing x.diff().ne(0).cumsum(), and using cumcount over the groups:

df.apply(lambda x: x.groupby(x.diff().ne(0).cumsum())
                    .cumcount()+1).add_suffix('_cumcount')

        A_cumcount  B_cumcount
0            1           1
1            2           2
2            3           1
3            1           2
4            2           3
5            1           1
6            2           2
7            3           3
8            4           1
9            1           2
10           2           3
11           3           1


来源:https://stackoverflow.com/questions/53614476/conditional-count-of-cumulative-sum-dataframe-loop-through-columns

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!