问题
I have a large data set that is logarithmic in distribution. I want to make a heat map, so I do a 2D histogram and pass that to implot. Because the data is logarithmic, I am passing the log of the data to the histogram. When I make the plot, however, I want the axis to be restored (ie 10^hist bin values) and log axes. If I set the axis to log style, then the image looks all skewed. The data is already 'logged' from when I passed it to the histogram, so I don't want the image affected, just the axis. So, in the below example, I want the image on the left with the axis on the right.
I guess I could do it with a fake overlayed axis, but I don't like to do that sort of thing if there's a better way...
import numpy as np
import matplotlib.pyplot as plt
x=10**np.random.random(10000)*5
y=10**np.random.random(10000)*5
samps, xedges, yedges = np.histogram2d(np.log10(y), np.log10(x), bins=50)
ax = plt.subplot(121)
plt.imshow(samps, extent=[0,5,0,5])
plt.xlabel('Log10 X')
plt.ylabel('Log10 Y')
ax = plt.subplot(122)
plt.imshow(samps, extent=[10**0,10**5,10**0,10**5])
plt.xlabel('X')
plt.ylabel('Y')
plt.xscale('log')
plt.yscale('log')
plt.show()
回答1:
You need to use a custom formatter. Here's an example from the matplotlib docs: https://matplotlib.org/examples/pylab_examples/custom_ticker1.html
I tend to use FuncFormatter
as the example does. The main trick is that your function need to take to arguments x
and pos
. I honestly don't know what pos
is for. Perhaps no even intentionally, but you can use FuncFormatter
as a decorator, which is what I do below:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
@plt.FuncFormatter
def fake_log(x, pos):
'The two args are the value and tick position'
return r'$10^{%d}$' % (x)
x=10**np.random.random(10000)*5
y=10**np.random.random(10000)*5
samps, xedges, yedges = np.histogram2d(np.log10(y), np.log10(x), bins=50)
fig, (ax1) = plt.subplots()
ax1.imshow(samps, extent=[0, 5, 0, 5])
ax1.xaxis.set_major_formatter(fake_log)
ax1.yaxis.set_major_formatter(fake_log)
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
回答2:
If you just want to change labels, you can access these directly by plt.gca().set_xticklabels
and plt.gca().set_yticklabels
. Here is a simple example changing the _text
property of these.
import numpy as np
import matplotlib.pyplot as plt
x = 10 ** np.random.random(10000) * 5
y = 10 ** np.random.random(10000) * 5
samps, xedges, yedges = np.histogram2d(np.log10(y), np.log10(x), bins=50)
plt.subplot(121)
p = plt.imshow(samps, extent=[0, 5, 0, 5])
plt.xlabel('Log10 X')
plt.ylabel('Log10 Y')
plt.subplot(122)
p = plt.imshow(samps, extent=[0, 5, 0, 5])
# The label handling stuff starts here
plt.pause(0.5) # Needed to make sure the drawing finished being created
plt.xlabel('X')
plt.ylabel('Y')
plt.draw()
ax = plt.gca()
lbx = ax.get_xticklabels()
lby = ax.get_yticklabels()
for i in range(len(lbx)):
lbx[i]._text = r'$10^' + lbx[i]._text + '$'
for i in range(len(lby)):
lby[i]._text = r'$10^' + lby[i]._text + '$'
ax.set_xticklabels(lbx)
ax.set_yticklabels(lby)
plt.show()
来源:https://stackoverflow.com/questions/48858854/how-to-apply-logarithmic-axis-labels-without-log-scaling-image-matplotlib-imsho