原文地址:https://www.yanbinghu.com/2019/01/07/16863.html
前言
假如面试官让你编写求斐波那契数列的代码时,是不是心中暗喜?不就是递归么,早就会了。如果真这么想,那就危险了。
递归求斐波那契数列
递归,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。
斐波那契数列的计算表达式很简单:
F(n) = n; n = 0,1F(n) = F(n-1) + F(n-2),n >= 2;
因此,我们能很快根据表达式写出递归版的代码:
/*fibo.c*/#include <stdio.h>#include <stdlib.h>/*求斐波那契数列递归版*/unsigned long fibo(unsigned long int n){ if(n <= 1) return n; else return fibo(n-1) + fibo(n-2);}int main(int argc,char *argv[]){ if(1 >= argc) { printf("usage:./fibo num\n"); return -1; } unsigned long n = atoi(argv[1]); unsigned long fiboNum = fibo(n); printf("the %lu result is %lu\n",n,fiboNum); return 0;}
关键代码为3~9行。简洁明了,一气呵成。
编译:
gcc -o fibo fibo.c
运行计算第5个斐波那契数:
$ time ./fibo 5the 5 result is 5real 0m0.001suser 0m0.001ssys 0m0.000s
看起来并没有什么不妥,运行时间也很短。
继续计算第50个斐波那契数列:
$ time ./fibo 50the 50 result is 12586269025real 1m41.655suser 1m41.524ssys 0m0.076s
计算第50个斐波那契数的时候,竟然将近两多钟!
递归分析
为什么计算第50个的时候竟然需要1分多钟。我们仔细分析我们的递归算法,就会发现问题,当我们计算fibo(5)的时候,是下面这样的:
|--F(1) |--F(2)| |--F(3)| |--F(0) | | |--F(4)| |--F(1) | | | | |--F(1) | |--F(2)| | |--F(0)F(5)| | |--F(1) | |--F(2)| | | |--F(0) |--F(3)| | |--F(1)
为了计算fibo(5),需要计算fibo(3),fibo(4);而为了计算fibo(4),需要计算fibo(2),fibo(3)……最终为了得到fibo(5)的结果,fibo(0)被计算了3次,fibo(1)被计算了5次,fibo(2)被计算了2次。可以看到,它的计算次数几乎是指数级的!
因此,虽然递归算法简洁,但是在这个问题中,它的时间复杂度却是难以接受的。除此之外,递归函数调用的越来越深,它们在不断入栈却迟迟不出栈,空间需求越来越大,虽然访问速度高,但大小是有限的,最终可能导致栈溢出。
在linux中,我们可以通过下面的命令查看栈空间的软限制:
$ ulimit -s8192
可以看到,默认栈空间大小只有8M。一般来说,8M的栈空间对于一般程序完全足够。如果8M的栈空间不够使用,那么就需要重新审视你的代码设计了。
递归改进版
既然我们知道最初版本的递归存在大量的重复计算,那么我们完全可以考虑将已经计算的值保存起来,从而避免重复计算,该版本代码实现如下:
/*fibo3.c*/#include <stdio.h>#include <stdlib.h>/*求斐波那契数列,避免重复计算版本*/unsigned long fiboProcess(unsigned long *array,unsigned long n){ if(n < 2) return n; else { /*递归保存值*/ array[n] = fiboProcess(array,n-1) + array[n-2]; return array[n]; }}unsigned long fibo(unsigned long n){ if(n <= 1) return n; unsigned long ret = 0; /*申请数组用于保存已经计算过的内容*/ unsigned long *array = (unsigned long*)calloc(n+1,sizeof(unsigned long)); if(NULL == array) { return -1; } array[1] = 1; ret = fiboProcess(array,n); free(array); array = NULL; return ret;}/**main函数部分与fibo.c相同,这里省略*/
效率如何呢?
$ gcc -o fibo0 fibo3.c$ time ./fibo0 50the 50 result is 12586269025real 0m0.002suser 0m0.002ssys 0m0.001s
可见其效率还是不错的,时间复杂度为O(n)。但是特别注意的是,这种改进版的递归,虽然避免了重复计算,但是调用链仍然比较长。
迭代解法
既然递归法不够优雅,我们换一种方法。如果不用计算机计算,让你去算第n个斐波那契数,你会怎么做呢?我想最简单直接的方法应该是:知道第一个和第二个后,计算第三个;知道第二个和第三个后,计算第四个,以此类推。最终可以得到我们需要的结果。这种思路,没有冗余的计算。基于这个思路,我们的C语言实现如下:
/*fibo1.c*/#include <stdio.h>#include <stdlib.h>/*求斐波那契数列迭代版*/unsigned long fibo(unsigned long n){ unsigned long preVal = 1; unsigned long prePreVal = 0; if(n <= 2) return n; unsigned long loop = 1; unsigned long returnVal = 0; while(loop < n) { returnVal = preVal +prePreVal; /*更新记录结果*/ prePreVal = preVal; preVal = returnVal; loop++; } return returnVal;}/**main函数部分与fibo.c相同,这里省略*/
编译并计算第50个斐波那契数:
$ gcc -o fibo1 fibo1.c$ time ./fibo1 50the 50 result is 12586269025real 0m0.002suser 0m0.001ssys 0m0.002s
可以看到,计算第50个斐波那契数只需要0.002s!时间复杂度为O(n)。
尾递归解法
同样的思路,但是采用尾递归的方法来计算。要计算第n个斐波那契数,我们可以先计算第一个,第二个,如果未达到n,则继续递归计算,尾递归C语言实现如下:
/*fibo2.c*/#include <stdio.h>#include <stdlib.h>/*求斐波那契数列尾递归版*/unsigned long fiboProcess(unsigned long n,unsigned long prePreVal,unsigned long preVal,unsigned long begin){ /*如果已经计算到我们需要计算的,则返回*/ if(n == begin) return preVal+prePreVal; else { begin++; return fiboProcess(n,preVal,prePreVal+preVal,begin); }}unsigned long fibo(unsigned long n){ if(n <= 1) return n; else return fiboProcess(n,0,1,2);}/**main函数部分与fibo.c相同,这里省略*/
效率如何呢?
$ gcc -o fibo2 fibo2.c$ time ./fibo2 50the 50 result is 12586269025real 0m0.002suser 0m0.001ssys 0m0.002s
可见,其效率并不逊于迭代法。尾递归在函数返回之前的最后一个操作仍然是递归调用。尾递归的好处是,进入下一个函数之前,已经获得了当前函数的结果,因此不需要保留当前函数的环境,内存占用自然也是比最开始提到的递归要小。时间复杂度为O(n)。
矩阵快速幂解法
这是一种高效的解法,需要推导,对此不感兴趣的可直接看最终推导结果。下面的式子成立是显而易见的,不多做解释。
如果a为矩阵,等式同样成立,后面我们会用到它。
假设有矩阵2*2矩阵A,满足下面的等式:
可以得到矩阵A:
因此也就可以得到下面的矩阵等式:
再进行变换如下:
以此类推,得到:
实际上f(n)就是矩阵中的A[0][0],或者是矩阵中的A[0][1]。
那么现在的问题就归结为,如何求解,其中A为2*2的矩阵。根据我们最开始的公式,很容易就有思路,代码实现如下:
/*fibo3.c*/#include <stdio.h>#include <stdlib.h>#include <string.h>#define MAX_COL 2#define MAX_ROW 2typedef unsigned long MatrixType;/*计算2*2矩阵乘法,这里没有写成通用形式,有兴趣的可以自己实现通用矩阵乘法*/int matrixDot(MatrixType A[MAX_ROW][MAX_COL],MatrixType B[MAX_ROW][MAX_COL],MatrixType C[MAX_ROW][MAX_COL]){ /*C为返回结果,由于A可能和C相同,因此使用临时矩阵存储*/ MatrixType tempMa[MAX_ROW][MAX_COL] ; memset(tempMa,0,sizeof(tempMa)); /*这里简便处理*/ tempMa[0][0] = A[0][0] * B[0][0] + A[0][1] * B [1][0]; tempMa[0][1] = A[0][0] * B[0][1] + A[0][1] * B [1][1]; tempMa[1][0] = A[1][0] * B[0][0] + A[1][1] * B [1][0]; tempMa[1][1] = A[1][0] * B[0][1] + A[1][1] * B [1][1]; memcpy(C,tempMa,sizeof(tempMa)); return 0;}MatrixType fibo(int n){ if(n <= 1) return n; MatrixType result[][MAX_COL] = {1,0,0,1}; MatrixType A[][2] = {1,1,1,0}; while (n > 0) { /*判断最后一位是否为1,即可知奇偶*/ if (n&1) { matrixDot(result,A,result); } n /= 2; matrixDot(A,A,A); } return result[0][1];}/**main函数部分与fibo.c相同,这里省略*/
该算法的关键部分在于对的计算,它利用了我们开始提到的等式,对奇数和偶数分别处理。假设n为9,初始矩阵为INIT则计算过程如下:
- 9为奇数,则计算INIT*A,随后A变为A*A,n变为9/2,即为4
- 4为偶数,则结果仍为INIT*A,随后A变为,n变为4/2,即2
- 2为偶数,则结果仍未INIT*A,随后变A变为 ,n变为2/2,即1
- 1为奇数,则结果为INIT*(A^8)*A
可以看到,计算次数类似与二分查找次数,其时间复杂度为O(logn)。
运行试试看:
$ gcc -o fibo3 fibo3.c$ time ./fibo3 50the 50 result is 12586269025real 0m0.002suser 0m0.002ssys 0m0.000s
通项公式解法
斐波那契数列的通项公式为:
关于通项公式的求解,可以当成一道高考数列大题,有兴趣的可以尝试一下(提示:两次构造等比数列)。C语言代码实现如下:
/*fibo4.c*/#include <stdio.h>#include <stdlib.h>#include <math.h>unsigned long fibo(unsigned long n){ if(n <=1 ) return n; return (unsigned long)((pow((1+sqrt(5))/2,n)-pow((1-sqrt(5))/2,n))/sqrt(5));}/**main函数部分与fibo.c相同,这里省略*/
来看一下效率:
$ gcc -o fibo4 fibo4.c -lm$ time ./fibo4the 50 result is 12586269025real 0m0.002suser 0m0.002ssys 0m0.000s
计算第50个,速度还不错。
斐波那契数列应用
关于斐波那契数列在实际中很常见,数学上也有很多奇特的性质,有兴趣的可在百科中查看。
总结
总结一下递归的优缺点:
优点:
- 实现简单
- 可读性好
缺点:
- 递归调用,占用空间大
- 递归太深,易发生栈溢出
- 可能存在重复计算
可以看到,对于求斐波那契数列的问题,使用一般的递归并不是一种很好的解法。
所以,当你使用递归方式实现一个功能之前,考虑一下使用递归带来的好处是否抵得上它的代价。
微信公众号【编程珠玑】:专注但不限于分享计算机编程基础,Linux,C语言,C++,算法,数据库等编程相关[原创]技术文章,号内包含大量经典电子书和视频学习资源。欢迎一起交流学习,一起修炼计算机“内功”,知其然,更知其所以然。
来源:https://www.cnblogs.com/bianchengzhuji/p/10240897.html