问题
I have a little issue with calculating coordinates. Given are airfoil profiles in two lists with the following exemplary coordinates:
Example:
x_Coordinates = [1, 0.9, 0.7, 0.5, 0.3, 0.1, 0.0, ...]
y_Coordinates = [0, -0.02, -0.06, -0.08, -0.10, -0.05, 0.0, ...]
diagram 1:
The only known things about the profile are the lists above and the following facts:
- the first coordinate is always the trailing edge, in the example above at (x=1, y=0)
- the coordinates always run on the bottom/underside to the leading edge, in the example above at (0,0) and from there back to the trailing edge
- the profile is not normalized and it can exist in a rotated form
Now I want to determine
- the leading edge and
- the camber line.
Until now, I have always used the smallest x-coodinate as the leading edge. However, this would not work in the following exemplary profile, since the smallest x-coordinate is located on the upper surface of the profile.
diagram 2:
Does anybody have an idea, how I could easily calculate/determine this data?
edit
one full sample array data
(1.0, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.075, 0.05, 0.025, 0.0125, 0.005, 0.0, 0.005, 0.0125, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0)
(0.00095, 0.00605, 0.01086, 0.01967, 0.02748, 0.03423, 0.03971, 0.04352, 0.04501, 0.04456, 0.04303, 0.04009, 0.03512, 0.0315, 0.02666, 0.01961, 0.0142, 0.0089, 0.0, -0.0089, -0.0142, -0.01961, -0.02666, -0.0315, -0.03512, -0.04009, -0.04303, -0.04456, -0.04501, -0.04352, -0.03971, -0.03423, -0.02748, -0.01967, -0.01086, -0.00605, -0.00095)
回答1:
Well it was quite a few years I do something with wings.
I do not have any skewed wings data as on your image the closest thing I found was this:
leading edge not correct for nontrivial wings
just find point where the sign of
dx
is flipping and computedx(i)=x(i)-x(i-1)
then mark zones where
dx
is positive or negative and find the middle between them (usuallydx==0
for that zone). Mark the edge point asix1
camber line
for precise geometry you will need intersections of normals casted from each side so:
- start on outline point
i
- cast normal inside wing
- search opposite side.
- find point, It's normal intersect the opposite normal and divide both normals to the same distance
This is doable but with insane complexity
- start on outline point
approximate camber line
less precise way but much much faster so:
- start on outline point
i
- find closest point to it on the opposite side
- compute midpoint between them and store it as inaccurate
axis0
points. Do this for all pointsi=(0-ix1)
(Red line) - do the same but start from opposite side store as
axis1
(dark red) - when done then just find the average between
axis0,axis1
This can be done in the same way result is blue axis polyline
- start on outline point
C++ source:
List<double> pnt; // outline 2D pnts = {x0,y0,x1,y1,x2,y2,...}
List<double> axis; // axis line 2D pnts = {x0,y0,x1,y1,x2,y2,...}
int ix0,ix1; // edge points
void compute()
{
int i,i0,i1;
double d,dd;
double *p0,*p1,*p2;
double x0,x1,y0,y1;
List<double> axis0,axis1;
// find leading edge point
ix0=0; ix1=0;
for (p0=pnt.dat,p1=p0+2,p2=p1+2,i=2;i<pnt.num;i+=2,p0=p1,p1=p2,p2+=2)
if ((p1[0]-p0[0])*(p2[0]-p1[0])<=0.0) { ix1=i; break; }
// find axis0: midpoint of i0=(0-ix1) i1=find closest from (ix1,pnt.num)
for (i0=2,i1=pnt.num-2;i0<ix1-2;i0+=2)
{
x0=pnt[i0+0];
y0=pnt[i0+1];
for (d=-1.0,i=i1;i>ix1+2;i-=2)
{
x1=pnt[i+0];
y1=pnt[i+1];
dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
if ((d<0.0)||(dd<=d)) { i1=i; d=dd; }
}
if (d>=0.0)
{
x1=pnt[i1+0];
y1=pnt[i1+1];
axis0.add(0.5*(x0+x1));
axis0.add(0.5*(y0+y1));
}
}
// find axis1: midpoint of i0=(ix1,pnt.num) i1=find closest from (0,ix1)
for (i1=2,i0=pnt.num-2;i0>ix1+2;i0-=2)
{
x0=pnt[i0+0];
y0=pnt[i0+1];
for (d=-1.0,i=i1;i<ix1-2;i+=2)
{
x1=pnt[i+0];
y1=pnt[i+1];
dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
if ((d<0.0)||(dd<=d)) { i1=i; d=dd; }
}
if (d>=0.0)
{
x1=pnt[i1+0];
y1=pnt[i1+1];
axis1.add(0.5*(x0+x1));
axis1.add(0.5*(y0+y1));
}
}
// find axis: midpoint of i0=<0-axis0.num) i1=find closest from <0-axis1.num)
axis.add(pnt[ix0+0]);
axis.add(pnt[ix0+1]);
for (i0=0,i1=0;i0<axis0.num;i0+=2)
{
x0=axis0[i0+0];
y0=axis0[i0+1];
for (d=-1.0,i=i1;i<axis1.num;i+=2)
{
x1=axis1[i+0];
y1=axis1[i+1];
dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
if ((d<0.0)||(dd<=d)) { i1=i; d=dd; }
}
if (d>=0.0)
{
x1=axis1[i1+0];
y1=axis1[i1+1];
axis.add(0.5*(x0+x1));
axis.add(0.5*(y0+y1));
}
}
axis.add(pnt[ix1+0]);
axis.add(pnt[ix1+1]);
}
List<double> xxx;
is just mine dynamic list template the same asdouble xxx[];
xxx.add(5)
; adds 5 to end of the listxxx[7]
access array elementxxx.num
is the actual used size of the arrayxxx.reset()
clears the array and set xxx.num=0
[edit1] correct leading edge point
Have an insane thought about this to find the edge point on the run plus some code tweaking and the outcome is good enough for me :) so first some explaining:
algorithm for axis stays the same but instead of ix1
bound use only points that was not yet used ... Also count only valid closest points (on the opposite side) if none found stop (top image case). From this point find the most far point from last axis point this is the leading edge point.
This approach has much much accurate output (axis0,axis1
are closer together)
Now the C++ code:
void compute()
{
int i,i0,i1,ii,n=4;
double d,dd;
double x0,x1,y0,y1;
List<double> axis0,axis1;
ix0=0; ix1=0;
// find axis0: midpoint of i0=(0-ix1) i1=find closest from (ix1,pnt.num)
for (i0=0,i1=pnt.num-2;i0+n<i1;i0+=2)
{
x0=pnt[i0+0];
y0=pnt[i0+1];
i=i1+n; if (i>pnt.num-2) i=pnt.num-2; ii=i1;
for (d=-1.0;i>i0+n;i-=2)
{
x1=pnt[i+0];
y1=pnt[i+1];
dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
if ((d<0.0)||((dd<=d)&&(dd>1e-10))) { i1=i; d=dd; }
if ((d>=0.0)&&(dd>d)) break;
}
if (d>=0.0)
{
if (i1-i0<=n+2) { i1=ii; break; } // stop if non valid closest point found
x1=pnt[i1+0];
y1=pnt[i1+1];
axis0.add(0.5*(x0+x1));
axis0.add(0.5*(y0+y1));
}
}
// find leading edge point (the farest point from last found axis point)
x0=axis0[axis0.num-2];
y0=axis0[axis0.num-1];
for (d=0.0,i=i0;i<=i1;i+=2)
{
x1=pnt[i+0];
y1=pnt[i+1];
dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
if (dd>d) { ix1=i; d=dd; }
}
axis0.add(pnt[ix1+0]);
axis0.add(pnt[ix1+1]);
// find axis1: midpoint of i0=(ix1,pnt.num) i1=find closest from (0,ix1)
for (i1=0,i0=pnt.num-2;i0+n>i1;i0-=2)
{
x0=pnt[i0+0];
y0=pnt[i0+1];
i=i1-n; if (i<0) i=0; ii=i1;
for (d=-1.0;i<i0-n;i+=2)
{
x1=pnt[i+0];
y1=pnt[i+1];
dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
if ((d<0.0)||((dd<=d)&&(dd>1e-10))) { i1=i; d=dd; }
if ((d>=0.0)&&(dd>d)) break;
}
if (d>=0.0)
{
if (i0-i1<=n+2) { i1=ii; break; } // stop if non valid closest point found
x1=pnt[i1+0];
y1=pnt[i1+1];
axis1.add(0.5*(x0+x1));
axis1.add(0.5*(y0+y1));
}
}
// find leading edge point (the farest point from last found axis point)
x0=axis1[axis1.num-2];
y0=axis1[axis1.num-1];
for (d=0.0,i=i1;i<=i0;i+=2)
{
x1=pnt[i+0];
y1=pnt[i+1];
dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
if (dd>d) { ix1=i; d=dd; }
}
axis1.add(pnt[ix1+0]);
axis1.add(pnt[ix1+1]);
// find axis: midpoint of i0=<0-axis0.num) i1=find closest from <0-axis1.num)
for (i0=0,i1=0;i0<axis0.num;i0+=2)
{
x0=axis0[i0+0];
y0=axis0[i0+1];
for (d=-1.0,i=i1;i<axis1.num;i+=2)
{
x1=axis1[i+0];
y1=axis1[i+1];
dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
if ((d<0.0)||(dd<=d)) { i1=i; d=dd; }
}
if (d>=0.0)
{
x1=axis1[i1+0];
y1=axis1[i1+1];
axis.add(0.5*(x0+x1));
axis.add(0.5*(y0+y1));
}
}
}
constant n=4
is just for safety overlapped search for closest points it should be a fraction of pnt.num
. Sometimes the closest point is before the last found closest point this depends on the curvature of booth sides. Too big n
will cause slowdowns and if n>pnt.num/4
it could also invalidate output.
If too small then for smaller radius of curvature will lower the accuracy this approach is dependent on sufficient point coverage. If the wing is sampled with too low point count it can lead to inaccuracy. The source code is 3 times almost the same thing you can chose which ix1
to remember (from first or second search) they are neighboring points
test profile:
1.000000 0.000000
0.990000 0.006719
0.980000 0.013307
0.970000 0.019757
0.960000 0.026064
0.950000 0.032223
0.940000 0.038228
0.930000 0.044075
0.920000 0.049759
0.910000 0.055276
0.900000 0.060623
0.890000 0.065795
0.880000 0.070790
0.870000 0.075604
0.860000 0.080234
0.850000 0.084678
0.840000 0.088935
0.830000 0.093001
0.820000 0.096876
0.810000 0.100558
0.800000 0.104046
0.790000 0.107339
0.780000 0.110438
0.770000 0.113342
0.760000 0.116051
0.750000 0.118566
0.740000 0.120887
0.730000 0.123016
0.720000 0.124954
0.710000 0.126702
0.700000 0.128262
0.690000 0.129637
0.680000 0.130829
0.670000 0.131839
0.660000 0.132672
0.650000 0.133331
0.640000 0.133818
0.630000 0.134137
0.620000 0.134292
0.610000 0.134287
0.600000 0.134127
0.590000 0.133815
0.580000 0.133356
0.570000 0.132755
0.560000 0.132016
0.550000 0.131146
0.540000 0.130148
0.530000 0.129030
0.520000 0.127795
0.510000 0.126450
0.500000 0.125000
0.490000 0.123452
0.480000 0.121811
0.470000 0.120083
0.460000 0.118275
0.450000 0.116392
0.440000 0.114441
0.430000 0.112429
0.420000 0.110361
0.410000 0.108244
0.400000 0.106085
0.390000 0.103889
0.380000 0.101663
0.370000 0.099414
0.360000 0.097148
0.350000 0.094870
0.340000 0.092589
0.330000 0.090309
0.320000 0.088037
0.310000 0.085779
0.300000 0.083541
0.290000 0.081329
0.280000 0.079149
0.270000 0.077006
0.260000 0.074906
0.250000 0.072855
0.240000 0.070858
0.230000 0.068920
0.220000 0.067047
0.210000 0.065242
0.113262 0.047023
0.110002 0.042718
0.106385 0.038580
0.102428 0.034615
0.098146 0.030832
0.093556 0.027239
0.088673 0.023844
0.083516 0.020652
0.078101 0.017670
0.072448 0.014904
0.066574 0.012361
0.060499 0.010044
0.054241 0.007958
0.047820 0.006108
0.041256 0.004497
0.034569 0.003129
0.027779 0.002005
0.020907 0.001129
0.013972 0.000502
0.006997 0.000126
0.000000 0.000000
0.000000 0.000000
-0.003997 0.000126
-0.007972 0.000502
-0.011907 0.001129
-0.015779 0.002005
-0.019569 0.003129
-0.023256 0.004497
-0.026820 0.006108
-0.030241 0.007958
-0.033499 0.010044
-0.036574 0.012361
-0.039448 0.014904
-0.042101 0.017670
-0.044516 0.020652
-0.046673 0.023844
-0.048556 0.027239
-0.050146 0.030832
-0.051428 0.034615
-0.052385 0.038580
-0.053002 0.042718
-0.053262 0.047023
-0.053153 0.051484
-0.052659 0.056093
-0.051768 0.060841
-0.050467 0.065717
-0.048744 0.070711
-0.046588 0.075813
-0.043988 0.081012
-0.040935 0.086297
-0.037420 0.091658
-0.033435 0.097082
-0.028972 0.102558
-0.024025 0.108074
-0.018589 0.113618
-0.012657 0.119178
-0.006228 0.124741
0.000704 0.130295
0.008139 0.135828
0.016079 0.141326
0.024525 0.146777
0.033475 0.152169
0.042930 0.157488
0.052885 0.162722
0.063339 0.167858
0.074287 0.172883
0.085723 0.177784
0.097643 0.182549
0.110038 0.187166
0.122902 0.191621
0.136226 0.195903
0.150000 0.200000
0.164214 0.203899
0.178856 0.207590
0.193914 0.211059
0.209376 0.214297
0.225227 0.217291
0.241453 0.220032
0.258039 0.222509
0.274968 0.224711
0.292223 0.226629
0.309787 0.228254
0.327641 0.229575
0.345766 0.230585
0.364142 0.231274
0.382749 0.231636
0.401566 0.231662
0.420570 0.231345
0.439740 0.230679
0.459054 0.229657
0.478486 0.228274
0.498015 0.226525
0.517615 0.224404
0.537262 0.221908
0.556930 0.219032
0.576595 0.215775
0.596231 0.212132
0.615811 0.208102
0.635310 0.203684
0.654700 0.198876
0.673956 0.193679
0.693050 0.188091
0.711955 0.182115
0.730644 0.175751
0.749091 0.169002
0.767268 0.161869
0.785149 0.154357
0.802706 0.146468
0.819913 0.138207
0.836742 0.129580
0.853169 0.120591
0.869166 0.111246
0.884707 0.101553
0.899768 0.091518
0.914322 0.081149
0.928345 0.070455
0.941813 0.059445
0.954701 0.048128
0.966987 0.036514
0.978646 0.024614
0.989658 0.012439
1.000000 0.000000
回答2:
A little outdated, but I still came across this post.
My solution for the leading edge circle is to first interpolate a spline through the airfoil coordinates. This gives a smooth parametric representation of the airfoil. Then calculate the curvature and curvature circles for the parametric curve and take the smallest circle. This defines the leading edge position and returns the radius there as well.
Below there are two Python functions (relying on the numpy and scipy packages) doing that:
def spline(self, x, y, points=200, degree=2, evaluate=False):
"""Interpolate spline through given points
Args:
spline (int, optional): Number of points on the spline
degree (int, optional): Degree of the spline
evaluate (bool, optional): If True, evaluate spline just at
the coordinates of the knots
"""
# interpolate B-spline through data points
# returns knots of control polygon
# tck ... tuple (t,c,k) containing the vector of knots,
# the B-spline coefficients, and the degree of the spline.
# u ... array of the parameters for each knot
# NOTE: s=0.0 is important as no smoothing should be done on the spline
# after interpolating it
tck, u = interpolate.splprep([x, y], s=0.0, k=degree)
# number of points on interpolated B-spline (parameter t)
t = np.linspace(0.0, 1.0, points)
# if True, evaluate spline just at the coordinates of the knots
if evaluate:
t = u
# evaluate B-spline at given parameters
# der=0: returns point coordinates
coo = interpolate.splev(t, tck, der=0)
# evaluate 1st derivative at given parameters
der1 = interpolate.splev(t, tck, der=1)
# evaluate 2nd derivative at given parameters
der2 = interpolate.splev(t, tck, der=2)
spline_data = [coo, u, t, der1, der2, tck]
return spline_data
Function to calculate the curvature properties of a parametric curve:
def getCurvature(spline_data):
"""Curvature and radius of curvature of a parametric curve
der1 is dx/dt and dy/dt at each point
der2 is d2x/dt2 and d2y/dt2 at each point
Returns:
float: Tuple of numpy arrays carrying gradient of the curve,
the curvature, radiusses of curvature circles and
curvature circle centers for each point of the curve
"""
coo = spline_data[0]
der1 = spline_data[3]
der2 = spline_data[4]
xd = der1[0]
yd = der1[1]
x2d = der2[0]
y2d = der2[1]
n = xd**2 + yd**2
d = xd*y2d - yd*x2d
# gradient dy/dx = dy/du / dx/du
gradient = der1[1] / der1[0]
# radius of curvature
R = n**(3./2.) / abs(d)
# curvature
C = d / n**(3./2.)
# coordinates of curvature-circle center points
xc = coo[0] - R * yd / np.sqrt(n)
yc = coo[1] + R * xd / np.sqrt(n)
return [gradient, C, R, xc, yc]
Example:
Detail:
Note that I also use a refinement of the spline at the leading edge. The corresponding algorithm is not presented here (as off topic).
来源:https://stackoverflow.com/questions/25958883/airfoil-profile-geometry-plotting