Multi-level regression model on multiply imputed data set in R (Amelia, zelig, lme4)

不想你离开。 提交于 2019-12-22 05:25:22

问题


I am trying to run a multi-level model on multiply imputed data (created with Amelia); the sample is based on a clustered sample with group = 24, N= 150.

library("ZeligMultilevel")
ML.model.0 <- zelig(dv~1 + tag(1|group), model="ls.mixed",
data=a.out$imputations)
summary(ML.model.0)

This code produces the following error code:

Error in object[[1]]$result$call : 
$ operator not defined for this S4 class

If I run a OLS regression, it works:

model.0 <- zelig(dv~1, model="ls", data=a.out$imputations)
m.0 <- coef(summary(model.0)) 
print(m.0, digits = 2)

      Value Std. Error t-stat  p-value
[1,]    45       0.34    130 2.6e-285

I am happy to provide a working example.

require(Zelig)
require(Amelia)
require(ZeligMultilevel)

data(freetrade)
length(freetrade$country) #grouping variable

#Imputation of missing data

a.out <- amelia(freetrade, m=5, ts="year", cs="country")

# Models: (1) OLS; (2) multi-level 

model.0 <- zelig(polity~1, model="ls", data=a.out$imputations)
m.0 <- coef(summary(model.0)) 
print(m.0, digits = 2)

ML.model.0 <- zelig(polity~1 + tag(1|country), model="ls.mixed", data=a.out$imputations)
summary(ML.model.0)

I think the issue may be with how Zelig interfaces with Amelia's mi class. Therefore, I turned toward an alternative R package: lme4.

require(lme4)
write.amelia(obj=a.out, file.stem="inmi", format="csv", na="NA")
diff <-list(5)  # a list to store each model, 5 is the number of the imputed datasets

for (i in 1:5) {
file.name <- paste("inmi", 5 ,".csv",sep="")
data.to.use <- read.csv(file.name)
diff[[5]] <- lmer(polity ~ 1 + (1 | country),
data = data.to.use)}
diff

The result is the following:

[[1]]
[1] 5

[[2]]
NULL

[[3]]
NULL

[[4]]
NULL

[[5]]
Linear mixed model fit by REML 
Formula: polity ~ 1 + (1 | country) 
   Data: data.to.use 
  AIC  BIC logLik deviance REMLdev
 1006 1015 -499.9     1002   999.9
Random effects:
 Groups   Name        Variance Std.Dev.
 country  (Intercept) 14.609   3.8222  
 Residual             17.839   4.2236  
Number of obs: 171, groups: country, 9

Fixed effects:
            Estimate Std. Error t value
(Intercept)    2.878      1.314    2.19

The results remain the same when I replace diff[[5]] by diff[[4]], diff[[3]] etc. Still, I am wondering whether this is actually the results for the combined dataset or for one single imputed data set. Any thoughts? Thanks!


回答1:


I modified the summary function for this object (fetched the source and opened up ./R/summary.R file). I added some curly braces to make the code flow and changed a getcoef to coef. This should work for this particular case, but I'm not sure if it's general. Function getcoef searches for slot coef3, and I have never seen this. Perhaps @BenBolker can throw an eye here? I can't guarantee this is what the result looks like, but the output looks legit to me. Perhaps you could contact the package authors to correct this in the future version.

summary(ML.model.0)

  Model: ls.mixed
  Number of multiply imputed data sets: 5 

Combined results:

Call:
zelig(formula = polity ~ 1 + tag(1 | country), model = "ls.mixed", 
    data = a.out$imputations)

Coefficients:
        Value Std. Error   t-stat    p-value
[1,] 2.902863   1.311427 2.213515 0.02686218

For combined results from datasets i to j, use summary(x, subset = i:j).
For separate results, use print(summary(x), subset = i:j).

Modified function:

summary.MI <- function (object, subset = NULL, ...) {
  if (length(object) == 0) {
    stop('Invalid input for "subset"')
  } else {
    if (length(object) == 1) {
      return(summary(object[[1]]))
    }
  }

  # Roman: This function isn't fecthing coefficients robustly. Something goes wrong. Contact package author. 
  getcoef <- function(obj) {
    # S4
    if (!isS4(obj)) {
      coef(obj)
    } else {
      if ("coef3" %in% slotNames(obj)) {
        obj@coef3
      } else {
        obj@coef
      }
    }
  }

    #
    res <- list()

    # Get indices
    subset <- if (is.null(subset)) {
      1:length(object)
    } else {
      c(subset)
    }

    # Compute the summary of all objects
    for (k in subset) {
      res[[k]] <- summary(object[[k]])
    }


    # Answer
    ans <- list(
      zelig = object[[1]]$name,
      call = object[[1]]$result@call,
      all = res
    )

    #
    coef1 <- se1 <- NULL

    #
    for (k in subset) {
#       tmp <-  getcoef(res[[k]]) # Roman: I changed this to coef, not 100% sure if the output is the same
      tmp <- coef(res[[k]])
      coef1 <- cbind(coef1, tmp[, 1])
      se1 <- cbind(se1, tmp[, 2])
    }

    rows <- nrow(coef1)
    Q <- apply(coef1, 1, mean)
    U <- apply(se1^2, 1, mean)
    B <- apply((coef1-Q)^2, 1, sum)/(length(subset)-1)
    var <- U+(1+1/length(subset))*B
    nu <- (length(subset)-1)*(1+U/((1+1/length(subset))*B))^2

    coef.table <- matrix(NA, nrow = rows, ncol = 4)
    dimnames(coef.table) <- list(rownames(coef1),
                                 c("Value", "Std. Error", "t-stat", "p-value"))
    coef.table[,1] <- Q
    coef.table[,2] <- sqrt(var)
    coef.table[,3] <- Q/sqrt(var)
    coef.table[,4] <- pt(abs(Q/sqrt(var)), df=nu, lower.tail=F)*2
    ans$coefficients <- coef.table
    ans$cov.scaled <- ans$cov.unscaled <- NULL

    for (i in 1:length(ans)) {
      if (is.numeric(ans[[i]]) && !names(ans)[i] %in% c("coefficients")) {
        tmp <- NULL
        for (j in subset) {
          r <- res[[j]]
          tmp <- cbind(tmp, r[[pmatch(names(ans)[i], names(res[[j]]))]])
        }
        ans[[i]] <- apply(tmp, 1, mean)
      }
    }

    class(ans) <- "summaryMI"
    ans
  }


来源:https://stackoverflow.com/questions/16571580/multi-level-regression-model-on-multiply-imputed-data-set-in-r-amelia-zelig-l

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!