How to avoid reading old files from S3 when appending new data?

允我心安 提交于 2019-12-19 12:06:15

问题


Once in 2 hours, spark job is running to convert some tgz files to parquet. The job appends the new data into an existing parquet in s3:

df.write.mode("append").partitionBy("id","day").parquet("s3://myBucket/foo.parquet")

In spark-submit output I can see significant time is being spent on reading old parquet files, for example:

16/11/27 14:06:15 INFO S3NativeFileSystem: Opening 's3://myBucket/foo.parquet/id=123/day=2016-11-26/part-r-00003-b20752e9-5d70-43f5-b8b4-50b5b4d0c7da.snappy.parquet' for reading

16/11/27 14:06:15 INFO S3NativeFileSystem: Stream for key 'foo.parquet/id=123/day=2016-11-26/part-r-00003-e80419de-7019-4859-bbe7-dcd392f6fcd3.snappy.parquet' seeking to position '149195444'

It looks like this operation takes less than 1 second per file, but the amount of files increases with time (each append adds new files), which makes me think that my code will not be able to scale.

Any ideas how to avoid reading old parquet files from s3 if I just need to append new data?

I use EMR 4.8.2 and DirectParquetOutputCommitter:

sc._jsc.hadoopConfiguration().set('spark.sql.parquet.output.committer.class', 'org.apache.spark.sql.parquet.DirectParquetOutputCommitter')

回答1:


I resolved this issue by writing the dataframe to EMR HDFS and then using s3-dist-cp uploading the parquets to S3



来源:https://stackoverflow.com/questions/40830152/how-to-avoid-reading-old-files-from-s3-when-appending-new-data

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!