前言
对于二叉树的递归遍历比较简单,所以本文主要讨论的是非递归版。其中,中序遍历的非递归写法最简单,后序遍历最难。
节点的定义:
//Binary Tree Node
typedef struct node
{
int data;
struct node* lchild; //左孩子
struct node* rchild; //右孩子
}BTNode;
首先,有一点是明确的:非递归写法一定会用到栈,这个应该不用太多的解释。我们先看中序遍历:
中序遍历
分析
中序遍历的递归定义:先左子树,后根节点,再右子树。如何写非递归代码呢?一句话:让代码跟着思维走。我们的思维是什么?思维就是中序遍历的路径。假设,你面前有一棵二叉树,现要求你写出它的中序遍历序列。如果你对中序遍历理解透彻的话,你肯定先找到左子树的最下边的节点。那么下面的代码就是理所当然的:
中序代码段(i)
BTNode* p = root; //p指向树根
stack<BTNode*> s; //STL中的栈
//一直遍历到左子树最下边,边遍历边保存根节点到栈中
while (p)
{
s.push(p);
p = p->lchild;
}
保存一路走过的根节点的理由是:中序遍历的需要,遍历完左子树后,需要借助根节点进入右子树。代码走到这里,指针p为空,此时无非两种情况:
说明:
①、上图中只给出了必要的节点和边,其它的边和节点与讨论无关,不必画出。
②、你可能认为图a中最近保存节点算不得是根节点。如果你看过树、二叉树基础,使用扩充二叉树的概念,就可以解释。总之,不用纠结这个没有意义问题。
③、整个二叉树只有一个根节点的情况可以划到图a。
仔细想想,二叉树的左子树,最下边是不是上图两种情况?不管怎样,此时都要出栈,并访问该节点。这个节点就是中序序列的第一个节点。根据我们的思维,代码应该是这样:
p = s.top();
s.pop();
cout << p->data;
来源:CSDN
作者:KID__77
链接:https://blog.csdn.net/KID__77/article/details/103603661