问题
For training an LSTM model in Tensorflow, I have structured my data into a tf.train.SequenceExample format and stored it into a TFRecord file. I would now like to use the new DataSet API to generate padded batches for training. In the documentation there is an example for using padded_batch, but for my data I can't figure out what the value of padded_shapes should be.
For reading the TFrecord file into the batches I have written the following Python code:
import math
import tensorflow as tf
import numpy as np
import struct
import sys
import array
if(len(sys.argv) != 2):
print "Usage: createbatches.py [RFRecord file]"
sys.exit(0)
vectorSize = 40
inFile = sys.argv[1]
def parse_function_dataset(example_proto):
sequence_features = {
'inputs': tf.FixedLenSequenceFeature(shape=[vectorSize],
dtype=tf.float32),
'labels': tf.FixedLenSequenceFeature(shape=[],
dtype=tf.int64)}
_, sequence = tf.parse_single_sequence_example(example_proto, sequence_features=sequence_features)
length = tf.shape(sequence['inputs'])[0]
return sequence['inputs'], sequence['labels']
sess = tf.InteractiveSession()
filenames = tf.placeholder(tf.string, shape=[None])
dataset = tf.contrib.data.TFRecordDataset(filenames)
dataset = dataset.map(parse_function_dataset)
# dataset = dataset.batch(1)
dataset = dataset.padded_batch(4, padded_shapes=[None])
iterator = dataset.make_initializable_iterator()
batch = iterator.get_next()
# Initialize `iterator` with training data.
training_filenames = [inFile]
sess.run(iterator.initializer, feed_dict={filenames: training_filenames})
print(sess.run(batch))
The code works well if I use dataset = dataset.batch(1)
(no padding needed in that case), but when I use the padded_batch
variant, I get the following error:
TypeError: If shallow structure is a sequence, input must also be a sequence. Input has type: .
Can you help me figuring out what I should pass for the padded_shapes parameter?
(I know there is lots of example code using threading and queues for this, but I'd rather use the new DataSet API for this project)
回答1:
You need to pass a tuple of shapes. In your case you should pass
dataset = dataset.padded_batch(4, padded_shapes=([vectorSize],[None]))
or try
dataset = dataset.padded_batch(4, padded_shapes=([None],[None]))
Check this code for more details. I had to debug this method to figure out why it wasn't working for me.
回答2:
If your current Dataset
object contains a tuple, you can also to specify the shape of each padded element.
For example, I have a (same_sized_images, Labels)
dataset and each label has different length but same rank.
def process_label(resized_img, label):
# Perfrom some tensor transformations
# ......
return resized_img, label
dataset = dataset.map(process_label)
dataset = dataset.padded_batch(batch_size,
padded_shapes=([None, None, 3],
[None, None])) # my label has rank 2
来源:https://stackoverflow.com/questions/45955241/how-do-i-create-padded-batches-in-tensorflow-for-tf-train-sequenceexample-data-u