问题
I have 2 dataframes:
df_1, column id
contain only characters and numbers ==> normalized, and id_no_normalized
Example:
id_normalized | id_no_normalized
-------------|-------------------
ABC | A_B.C
-------------|-------------------
ERFD | E.R_FD
-------------|-------------------
12ZED | 12_Z.ED
df_2, column name
contain only characters and numbers ==> normalized are attached
Example:
name
----------------------------
googleisa12ZEDgoodnavigator
----------------------------
internetABCexplorer
----------------------------
I would like to look the id_normalized (dataset_1)
if exist in name (dataset_2)
. If I find it, I take the value of id_no_normalized
and I store it in a new column in dataset_2
Expect result:
name | result
----------------------------|----------
googleisa12ZEDgoodnavigator | 12_Z.ED
----------------------------|----------
internetABCexplorer | A_B.C
----------------------------|----------
I did it using this code:
df_result = df_2.withColumn("id_no_normalized", dft_2.name.contains(df_1.id_normalized))
return df_result.select("name", "id_normalized")
is not working because, it doesn't find the id_normalized
in the df_2.
Second solution, it work only when I limited the output on 300 rows almost, but when I return all the data, is took many time running and not finish:
df_1 = df_1.select("id_no_normalized").drop_duplicates()
df_1 = df_1.withColumn(
"id_normalized",
F.regexp_replace(F.col("id_no_normalized"), "[^a-zA-Z0-9]+", ""))
df_2 = df_2.select("name")
extract = F.expr('position(id_normalized IN name)>0')
result = df_1.join(df_2, extract)
return result
How can I correct my code to resolve it ? Thank you
回答1:
We can solve this using cross join and applying UDF on new DF, but again we need to ensure it works on a big dataset.
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType
data1 = [
{"id_normalized":"ABC","id_no_normalized":"A_B.C"},
{"id_normalized":"ERFD","id_no_normalized":"E.R_FD"},
{"id_normalized":"12ZED","id_no_normalized":"12_Z.ED"}
]
data2 = [
{"name": "googleisa12ZEDgoodnavigator"},
{"name": "internetABCexplorer"}
]
df1 = spark.createDataFrame(data1, ["id_no_normalized", "id_normalized"])
df2 = spark.createDataFrame(data2, ["name"])
df3 = df1.crossJoin(df2)
search_for_udf = udf(lambda name,id_normalized: name.find(id_normalized), returnType=IntegerType())
df4 = df3.withColumn("contain", search_for_udf(df3["name"], df3["id_normalized"]))
df4.filter(df4["contain"] > -1).show()
>>> df4.filter(df4["contain"] > -1).show()
+----------------+-------------+--------------------+-------+
|id_no_normalized|id_normalized| name|contain|
+----------------+-------------+--------------------+-------+
| A_B.C| ABC| internetABCexplorer| 8|
| 12_Z.ED| 12ZED|googleisa12ZEDgoo...| 9|
+----------------+-------------+--------------------+-------+
I believe there are some spark techniques available to make cross join efficient.
来源:https://stackoverflow.com/questions/59197109/looking-if-string-contain-a-sub-string-in-differents-dataframes