问题
I am trying to convert a .csv file to a netCDF4 via Python but I am having trouble figuring out how I can store information from a .csv table format into a netCDF. My main concern is how do we declare the variables from the columns into a workable netCDF4 format? Everything I have found is normally extracting information from a netCDF4 to a .csv or ASCII. I have provided the sample data, sample code, and my errors for declaring the appropriate arrays. Any help would be much appreciated.
The sample table is below:
Station Name Country Code Lat Lon mn.yr temp1 temp2 temp3 hpa
Somewhere US 12340 35.52 23.358 1.19 -8.3 -13.1 -5 69.5
Somewhere US 12340 2.1971 -10.7 -13.9 -7.9 27.9
Somewhere US 12340 3.1971 -8.4 -13 -4.3 90.8
My sample code is:
#!/usr/bin/env python
import scipy
import numpy
import netCDF4
import csv
from numpy import arange, dtype
#Declare empty arrays
v1 = []
v2 = []
v3 = []
v4 = []
# Open csv file and declare variable for arrays for each heading
f = open('station_data.csv', 'r').readlines()
for line in f[1:]:
fields = line.split(',')
v1.append(fields[0]) #station
v2.append(fields[1])#country
v3.append(int(fields[2]))#code
v4.append(float(fields[3]))#lat
v5.append(float(fields[3]))#lon
#more variables included but this is just an abridged list
print v1
print v2
print v3
print v4
#convert to netcdf4 framework that works as a netcdf
ncout = netCDF4.Dataset('station_data.nc','w')
# latitudes and longitudes. Include NaN for missing numbers
lats_out = -25.0 + 5.0*arange(v4,dtype='float32')
lons_out = -125.0 + 5.0*arange(v5,dtype='float32')
# output data.
press_out = 900. + arange(v4*v5,dtype='float32') # 1d array
press_out.shape = (v4,v5) # reshape to 2d array
temp_out = 9. + 0.25*arange(v4*v5,dtype='float32') # 1d array
temp_out.shape = (v4,v5) # reshape to 2d array
# create the lat and lon dimensions.
ncout.createDimension('latitude',v4)
ncout.createDimension('longitude',v5)
# Define the coordinate variables. They will hold the coordinate information
lats = ncout.createVariable('latitude',dtype('float32').char,('latitude',))
lons = ncout.createVariable('longitude',dtype('float32').char,('longitude',))
# Assign units attributes to coordinate var data. This attaches a text attribute to each of the coordinate variables, containing the units.
lats.units = 'degrees_north'
lons.units = 'degrees_east'
# write data to coordinate vars.
lats[:] = lats_out
lons[:] = lons_out
# create the pressure and temperature variables
press = ncout.createVariable('pressure',dtype('float32').char,('latitude','longitude'))
temp = ncout.createVariable('temperature',dtype('float32').char,'latitude','longitude'))
# set the units attribute.
press.units = 'hPa'
temp.units = 'celsius'
# write data to variables.
press[:] = press_out
temp[:] = temp_out
ncout.close()
f.close()
error:
Traceback (most recent call last):
File "station_data.py", line 33, in <module>
v4.append(float(fields[3]))#lat
ValueError: could not convert string to float:
回答1:
If you see your input file, there is no value corresponding to column Lat in second row.
When you read the csv file this value i.e. fields[3]
is stored as an empty string ""
. That's why you are getting a ValueError
.
Instead of using the default function you can define a new function which can handle this error:
def str_to_float(str):
try:
number = float(str)
except ValueError:
number = 0.0
# you can assign an appropriate value instead of 0.0 which suits your requirement
return number
Now you can use this function in place of built-in float function this way:
v4.append(str_to_float(fields[3]))
回答2:
This is a perfect job for xarray, a python package that has a dataset object representing the netcdf common data model. Here's an example you can try:
import pandas as pd
import xarray as xr
url = 'http://www.cpc.ncep.noaa.gov/products/precip/CWlink/'
ao_file = url + 'daily_ao_index/monthly.ao.index.b50.current.ascii'
nao_file = url + 'pna/norm.nao.monthly.b5001.current.ascii'
kw = dict(sep='\s*', parse_dates={'dates': [0, 1]},
header=None, index_col=0, squeeze=True, engine='python')
# read into Pandas Series
s1 = pd.read_csv(ao_file, **kw)
s2 = pd.read_csv(nao_file, **kw)
s1.name='AO'
s2.name='NAO'
# concatenate two Pandas Series into a Pandas DataFrame
df=pd.concat([s1, s2], axis=1)
# create xarray Dataset from Pandas DataFrame
xds = xr.Dataset.from_dataframe(df)
# add variable attribute metadata
xds['AO'].attrs={'units':'1', 'long_name':'Arctic Oscillation'}
xds['NAO'].attrs={'units':'1', 'long_name':'North Atlantic Oscillation'}
# add global attribute metadata
xds.attrs={'Conventions':'CF-1.0', 'title':'AO and NAO', 'summary':'Arctic and North Atlantic Oscillation Indices'}
# save to netCDF
xds.to_netcdf('/usgs/data2/notebook/data/ao_and_nao.nc')
Then running ncdump -h ao_and_nao.nc
produces:
netcdf ao_and_nao {
dimensions:
dates = 782 ;
variables:
double dates(dates) ;
dates:units = "days since 1950-01-06 00:00:00" ;
dates:calendar = "proleptic_gregorian" ;
double NAO(dates) ;
NAO:units = "1" ;
NAO:long_name = "North Atlantic Oscillation" ;
double AO(dates) ;
AO:units = "1" ;
AO:long_name = "Arctic Oscillation" ;
// global attributes:
:title = "AO and NAO" ;
:summary = "Arctic and North Atlantic Oscillation Indices" ;
:Conventions = "CF-1.0" ;
Note that you can install xarray
using pip
, but if you are using the Anaconda Python Distribution, you can install it from the Anaconda.org/conda-forge channel by using:
conda install -c conda-forge xarray
回答3:
xarray
is a good candidate, but I think iris
is better because it helps you with the CF-conventions by raising errors when you make mistakes.
The notebook below re-implements the AO/NOA example:
http://nbviewer.ipython.org/gist/ocefpaf/c66a7d0b967664ee4f5c
(See the last cells on the bottom for the "CF-conventions advantages" of iris.)
来源:https://stackoverflow.com/questions/22933855/convert-csv-to-netcdf