问题
Note: Version 2, below, uses the Sieve of Eratosthenes. There are several answers that helped with what I originally asked. I have chosen the Sieve of Eratosthenes method, implemented it, and changed the question title and tags appropriately. Thanks to everyone who helped!
Introduction
I wrote this fancy little method that generates an array of int containing the prime numbers less than the specified upper bound. It works very well, but I have a concern.
The Method
private static int [] generatePrimes(int max) {
int [] temp = new int [max];
temp [0] = 2;
int index = 1;
int prime = 1;
boolean isPrime = false;
while((prime += 2) <= max) {
isPrime = true;
for(int i = 0; i < index; i++) {
if(prime % temp [i] == 0) {
isPrime = false;
break;
}
}
if(isPrime) {
temp [index++] = prime;
}
}
int [] primes = new int [index];
while(--index >= 0) {
primes [index] = temp [index];
}
return primes;
}
My Concern
My concern is that I am creating an array that is far too large for the final number of elements the method will return. The trouble is that I don't know of a good way to correctly guess the number of prime numbers less than a specified number.
Focus
This is how the program uses the arrays. This is what I want to improve upon.
- I create a temporary array that is large enough to hold every number less than the limit.
- I generate the prime numbers, while keeping count of how many I have generated.
- I make a new array that is the right dimension to hold just the prime numbers.
- I copy each prime number from the huge array to the array of the correct dimension.
- I return the array of the correct dimension that holds just the prime numbers I generated.
Questions
- Can I copy the whole chunk (at once) of
temp[]
that has nonzero elements toprimes[]
without having to iterate through both arrays and copy the elements one by one? - Are there any data structures that behave like an array of primitives that can grow as elements are added, rather than requiring a dimension upon instantiation? What is the performance penalty compared to using an array of primitives?
Version 2 (thanks to Jon Skeet):
private static int [] generatePrimes(int max) {
int [] temp = new int [max];
temp [0] = 2;
int index = 1;
int prime = 1;
boolean isPrime = false;
while((prime += 2) <= max) {
isPrime = true;
for(int i = 0; i < index; i++) {
if(prime % temp [i] == 0) {
isPrime = false;
break;
}
}
if(isPrime) {
temp [index++] = prime;
}
}
return Arrays.copyOfRange(temp, 0, index);
}
Version 3 (thanks to Paul Tomblin) which uses the Sieve of Erastosthenes:
private static int [] generatePrimes(int max) {
boolean[] isComposite = new boolean[max + 1];
for (int i = 2; i * i <= max; i++) {
if (!isComposite [i]) {
for (int j = i; i * j <= max; j++) {
isComposite [i*j] = true;
}
}
}
int numPrimes = 0;
for (int i = 2; i <= max; i++) {
if (!isComposite [i]) numPrimes++;
}
int [] primes = new int [numPrimes];
int index = 0;
for (int i = 2; i <= max; i++) {
if (!isComposite [i]) primes [index++] = i;
}
return primes;
}
回答1:
Your method of finding primes, by comparing every single element of the array with every possible factor is hideously inefficient. You can improve it immensely by doing a Sieve of Eratosthenes over the entire array at once. Besides doing far fewer comparisons, it also uses addition rather than division. Division is way slower.
回答2:
ArrayList<>
Sieve of Eratosthenes
// Return primes less than limit
static ArrayList<Integer> generatePrimes(int limit) {
final int numPrimes = countPrimesUpperBound(limit);
ArrayList<Integer> primes = new ArrayList<Integer>(numPrimes);
boolean [] isComposite = new boolean [limit]; // all false
final int sqrtLimit = (int)Math.sqrt(limit); // floor
for (int i = 2; i <= sqrtLimit; i++) {
if (!isComposite [i]) {
primes.add(i);
for (int j = i*i; j < limit; j += i) // `j+=i` can overflow
isComposite [j] = true;
}
}
for (int i = sqrtLimit + 1; i < limit; i++)
if (!isComposite [i])
primes.add(i);
return primes;
}
Formula for upper bound of number of primes less than or equal to max
(see wolfram.com):
static int countPrimesUpperBound(int max) {
return max > 1 ? (int)(1.25506 * max / Math.log((double)max)) : 0;
}
回答3:
Create an ArrayList<Integer>
and then convert to an int[]
at the end.
There are various 3rd party IntList
(etc) classes around, but unless you're really worried about the hit of boxing a few integers, I wouldn't worry about it.
You could use Arrays.copyOf
to create the new array though. You might also want to resize by doubling in size each time you need to, and then trim at the end. That would basically be mimicking the ArrayList
behaviour.
回答4:
Algo using Sieve of Eratosthenes
public static List<Integer> findPrimes(int limit) {
List<Integer> list = new ArrayList<>();
boolean [] isComposite = new boolean [limit + 1]; // limit + 1 because we won't use '0'th index of the array
isComposite[1] = true;
// Mark all composite numbers
for (int i = 2; i <= limit; i++) {
if (!isComposite[i]) {
// 'i' is a prime number
list.add(i);
int multiple = 2;
while (i * multiple <= limit) {
isComposite [i * multiple] = true;
multiple++;
}
}
}
return list;
}
Image depicting the above algo (Grey color cells represent prime number. Since we consider all numbers as prime numbers intially, the whole is grid is grey initially.)
Image Source: WikiMedia
回答5:
The easiest solution would be to return some member of the Collections Framework instead of an array.
回答6:
Are you using Java 1.5? Why not return List<Integer>
and use ArrayList<Integer>
? If you do need to return an int[]
, you can do it by converting List to int[]
at the end of processing.
回答7:
As Paul Tomblin points out, there are better algorithms.
But keeping with what you have, and assuming an object per result is too big:
You are only ever appending to the array. So, use a relatively small int[] array. When it's full use append it to a List and create a replacement. At the end copy it into a correctly sized array.
Alternatively, guess the size of the int[] array. If it is too small, replace by an int[] with a size a fraction larger than the current array size. The performance overhead of this will remain proportional to the size. (This was discussed briefly in a recent stackoverflow podcast.)
回答8:
Now that you've got a basic sieve in place, note that the inner loop need only continue until temp[i]*temp[i] > prime
.
回答9:
I have a really efficient implementation:
- we don't keep the even numbers, therefore halving the memory usage.
- we use
BitSet
, requiring only one bit per number. - we estimate the upper bound for number of primes on the interval, thus we can set the
initialCapacity
for the Array appropriately. - we don't perform any kind of division in the loops.
Here's the code:
public ArrayList<Integer> sieve(int n) {
int upperBound = (int) (1.25506 * n / Math.log(n));
ArrayList<Integer> result = new ArrayList<Integer>(upperBound);
if (n >= 2)
result.add(2);
int size = (n - 1) / 2;
BitSet bs = new BitSet(size);
int i = 0;
while (i < size) {
int p = 3 + 2 * i;
result.add(p);
for (int j = i + p; j < size; j += p)
bs.set(j);
i = bs.nextClearBit(i + 1);
}
return result;
}
回答10:
Restructure your code. Throw out the temporary array, and instead write function that just prime-tests an integer. It will be reasonably fast, since you're only using native types. Then you can, for instance, loop and build a list of integers that are prime, before finally converting that to an array to return.
回答11:
I finally finished the program It is an optimized sieve
public static int[] generatePrimes(int max) {
boolean[] isComposite = new boolean[max + 1];
LinkedList<Integer> Primes = new LinkedList<>(); //linkedlist so not have to iterate 2 times
int sqrt = (int) Math.sqrt(max); //end at the square root
for (int i = 2; i <= sqrt; i++) {
if (!isComposite[i]) {
int s = i*i; //start from the prime's square
while (s <= max) {
isComposite[s] = true; //oh no its a not prime
s+=i;
}
}
}
for(int i = 2; i < max; i++){
if(!isComposite[i]){
Primes.add(i);
}
}
int[] result = new int[Primes.size()];
for (int i = 0; i < result.length; i++) {
result[i] = Primes.get(i);
}
return result;
}
回答12:
Not sure if this will suite your situation but you can take a look at my approach. I used mine using Sieve of Eratosthenes.
public static List<Integer> sieves(int n) {
Map<Integer,Boolean> numbers = new LinkedHashMap<>();
List<Integer> primes = new ArrayList<>();
//First generate a list of integers from 2 to 30
for(int i=2; i<n;i++){
numbers.put(i,true);
}
for(int i : numbers.keySet()){
/**
* The first number in the list is 2; cross out every 2nd number in the list after 2 by
* counting up from 2 in increments of 2 (these will be all the multiples of 2 in the list):
*
* The next number in the list after 2 is 3; cross out every 3rd number in the list after 3 by
* counting up from 3 in increments of 3 (these will be all the multiples of 3 in the list):
* The next number not yet crossed out in the list after 5 is 7; the next step would be to cross out every
* 7th number in the list after 7, but they are all already crossed out at this point,
* as these numbers (14, 21, 28) are also multiples of smaller primes because 7 × 7 is greater than 30.
* The numbers not crossed out at this point in the list are all the prime numbers below 30:
*/
if(numbers.get(i)){
for(int j = i+i; j<n; j+=i) {
numbers.put(j,false);
}
}
}
for(int i : numbers.keySet()){
for(int j = i+i; j<n && numbers.get(i); j+=i) {
numbers.put(j,false);
}
}
for(int i : numbers.keySet()){
if(numbers.get(i)) {
primes.add(i);
}
}
return primes;
}
Added comment for each steps that has been illustrated in wikipedia
回答13:
I have done using HashMap and found it very simple
import java.util.HashMap;
import java.util.Map;
/*Using Algorithms such as sieve of Eratosthanas */
public class PrimeNumber {
public static void main(String[] args) {
int prime = 15;
HashMap<Integer, Integer> hashMap = new HashMap<Integer, Integer>();
hashMap.put(0, 0);
hashMap.put(1, 0);
for (int i = 2; i <= prime; i++) {
hashMap.put(i, 1);// Assuming all numbers are prime
}
printPrimeNumberEratoshanas(hashMap, prime);
}
private static void printPrimeNumberEratoshanas(HashMap<Integer, Integer> hashMap, int prime) {
System.out.println("Printing prime numbers upto" + prime + ".....");
for (Map.Entry<Integer, Integer> entry : hashMap.entrySet()) {
if (entry.getValue().equals(1)) {
System.out.println(entry.getKey());
for (int j = entry.getKey(); j < prime; j++) {
for (int k = j; k * j <= prime; k++) {
hashMap.put(j * k, 0);
}
}
}
}
}
}
Think this is effective
回答14:
public static void primes(int n) {
boolean[] lista = new boolean[n+1];
for (int i=2;i<lista.length;i++) {
if (lista[i]==false) {
System.out.print(i + " ");
}
for (int j=i+i;j<lista.length;j+=i) {
lista[j]=true;
}
}
}
来源:https://stackoverflow.com/questions/586284/finding-prime-numbers-with-the-sieve-of-eratosthenes-originally-is-there-a-bet