Best way to read a large file into a byte array in C#?

你离开我真会死。 提交于 2019-12-17 02:52:28

问题


I have a web server which will read large binary files (several megabytes) into byte arrays. The server could be reading several files at the same time (different page requests), so I am looking for the most optimized way for doing this without taxing the CPU too much. Is the code below good enough?

public byte[] FileToByteArray(string fileName)
{
    byte[] buff = null;
    FileStream fs = new FileStream(fileName, 
                                   FileMode.Open, 
                                   FileAccess.Read);
    BinaryReader br = new BinaryReader(fs);
    long numBytes = new FileInfo(fileName).Length;
    buff = br.ReadBytes((int) numBytes);
    return buff;
}

回答1:


Simply replace the whole thing with:

return File.ReadAllBytes(fileName);

However, if you are concerned about the memory consumption, you should not read the whole file into memory all at once at all. You should do that in chunks.




回答2:


I might argue that the answer here generally is "don't". Unless you absolutely need all the data at once, consider using a Stream-based API (or some variant of reader / iterator). That is especially important when you have multiple parallel operations (as suggested by the question) to minimise system load and maximise throughput.

For example, if you are streaming data to a caller:

Stream dest = ...
using(Stream source = File.OpenRead(path)) {
    byte[] buffer = new byte[2048];
    int bytesRead;
    while((bytesRead = source.Read(buffer, 0, buffer.Length)) > 0) {
        dest.Write(buffer, 0, bytesRead);
    }
}



回答3:


I would think this:

byte[] file = System.IO.File.ReadAllBytes(fileName);



回答4:


Your code can be factored to this (in lieu of File.ReadAllBytes):

public byte[] ReadAllBytes(string fileName)
{
    byte[] buffer = null;
    using (FileStream fs = new FileStream(fileName, FileMode.Open, FileAccess.Read))
    {
        buffer = new byte[fs.Length];
        fs.Read(buffer, 0, (int)fs.Length);
    }
    return buffer;
} 

Note the Integer.MaxValue - file size limitation placed by the Read method. In other words you can only read a 2GB chunk at once.

Also note that the last argument to the FileStream is a buffer size.

I would also suggest reading about FileStream and BufferedStream.

As always a simple sample program to profile which is fastest will be most beneficial.

Also your underlying hardware will have a large effect on performance. Are you using server based hard disk drives with large caches and a RAID card with onboard memory cache? Or are you using a standard drive connected to the IDE port?




回答5:


Depending on the frequency of operations, the size of the files, and the number of files you're looking at, there are other performance issues to take into consideration. One thing to remember, is that each of your byte arrays will be released at the mercy of the garbage collector. If you're not caching any of that data, you could end up creating a lot of garbage and be losing most of your performance to % Time in GC. If the chunks are larger than 85K, you'll be allocating to the Large Object Heap(LOH) which will require a collection of all generations to free up (this is very expensive, and on a server will stop all execution while it's going on). Additionally, if you have a ton of objects on the LOH, you can end up with LOH fragmentation (the LOH is never compacted) which leads to poor performance and out of memory exceptions. You can recycle the process once you hit a certain point, but I don't know if that's a best practice.

The point is, you should consider the full life cycle of your app before necessarily just reading all the bytes into memory the fastest way possible or you might be trading short term performance for overall performance.




回答6:


I'd say BinaryReader is fine, but can be refactored to this, instead of all those lines of code for getting the length of the buffer:

public byte[] FileToByteArray(string fileName)
{
    byte[] fileData = null;

    using (FileStream fs = File.OpenRead(fileName)) 
    { 
        using (BinaryReader binaryReader = new BinaryReader(fs))
        {
            fileData = binaryReader.ReadBytes((int)fs.Length); 
        }
    }
    return fileData;
}

Should be better than using .ReadAllBytes(), since I saw in the comments on the top response that includes .ReadAllBytes() that one of the commenters had problems with files > 600 MB, since a BinaryReader is meant for this sort of thing. Also, putting it in a using statement ensures the FileStream and BinaryReader are closed and disposed.




回答7:


In case with 'a large file' is meant beyond the 4GB limit, then my following written code logic is appropriate. The key issue to notice is the LONG data type used with the SEEK method. As a LONG is able to point beyond 2^32 data boundaries. In this example, the code is processing first processing the large file in chunks of 1GB, after the large whole 1GB chunks are processed, the left over (<1GB) bytes are processed. I use this code with calculating the CRC of files beyond the 4GB size. (using https://crc32c.machinezoo.com/ for the crc32c calculation in this example)

private uint Crc32CAlgorithmBigCrc(string fileName)
{
    uint hash = 0;
    byte[] buffer = null;
    FileInfo fileInfo = new FileInfo(fileName);
    long fileLength = fileInfo.Length;
    int blockSize = 1024000000;
    decimal div = fileLength / blockSize;
    int blocks = (int)Math.Floor(div);
    int restBytes = (int)(fileLength - (blocks * blockSize));
    long offsetFile = 0;
    uint interHash = 0;
    Crc32CAlgorithm Crc32CAlgorithm = new Crc32CAlgorithm();
    bool firstBlock = true;
    using (FileStream fs = new FileStream(fileName, FileMode.Open, FileAccess.Read))
    {
        buffer = new byte[blockSize];
        using (BinaryReader br = new BinaryReader(fs))
        {
            while (blocks > 0)
            {
                blocks -= 1;
                fs.Seek(offsetFile, SeekOrigin.Begin);
                buffer = br.ReadBytes(blockSize);
                if (firstBlock)
                {
                    firstBlock = false;
                    interHash = Crc32CAlgorithm.Compute(buffer);
                    hash = interHash;
                }
                else
                {
                    hash = Crc32CAlgorithm.Append(interHash, buffer);
                }
                offsetFile += blockSize;
            }
            if (restBytes > 0)
            {
                Array.Resize(ref buffer, restBytes);
                fs.Seek(offsetFile, SeekOrigin.Begin);
                buffer = br.ReadBytes(restBytes);
                hash = Crc32CAlgorithm.Append(interHash, buffer);
            }
            buffer = null;
        }
    }
    //MessageBox.Show(hash.ToString());
    //MessageBox.Show(hash.ToString("X"));
    return hash;
}



回答8:


Use the BufferedStream class in C# to improve performance. A buffer is a block of bytes in memory used to cache data, thereby reducing the number of calls to the operating system. Buffers improve read and write performance.

See the following for a code example and additional explanation: http://msdn.microsoft.com/en-us/library/system.io.bufferedstream.aspx




回答9:


use this:

 bytesRead = responseStream.ReadAsync(buffer, 0, Length).Result;



回答10:


I would recommend trying the Response.TransferFile() method then a Response.Flush() and Response.End() for serving your large files.




回答11:


If you're dealing with files above 2 GB, you'll find that the above methods fail.

It's much easier just to hand the stream off to MD5 and allow that to chunk your file for you:

private byte[] computeFileHash(string filename)
{
    MD5 md5 = MD5.Create();
    using (FileStream fs = new FileStream(filename, FileMode.Open))
    {
        byte[] hash = md5.ComputeHash(fs);
        return hash;
    }
}


来源:https://stackoverflow.com/questions/2030847/best-way-to-read-a-large-file-into-a-byte-array-in-c

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!