问题
C11 adds, among other things, 'Anonymous Structs and Unions'.
I poked around but could not find a clear explanation of when anonymous structs and unions would be useful. I ask because I don't completely understand what they are. I get that they are structs or unions without the name afterwards, but I have always (had to?) treat that as an error so I can only conceive a use for named structs.
回答1:
Anonymous union inside structures are very useful in practice. Consider that you want to implement a discriminated sum type (or tagged union), an aggregate with a boolean and either a float or a char*
(i.e. a string), depending upon the boolean flag. With C11 you should be able to code
typedef struct {
bool is_float;
union {
float f;
char* s;
};
} mychoice_t;
double as_float(mychoice_t* ch)
{
if (ch->is_float) return ch->f;
else return atof(ch->s);
}
With C99, you'll have to name the union, and code ch->u.f
and ch->u.s
which is less readable and more verbose.
回答2:
A typical and real world use of anonymous structs and unions are to provide an alternative view to data. For example when implementing a 3D point type:
typedef struct {
union{
struct{
double x;
double y;
double z;
};
double raw[3];
};
}vec3d_t;
vec3d_t v;
v.x = 4.0;
v.raw[1] = 3.0; // Equivalent to v.y = 3.0
v.z = 2.0;
This is useful if you interface to code that expects a 3D vector as a pointer to three doubles. Instead of doing f(&v.x)
which is ugly, you can do f(v.raw)
which makes your intent clear.
回答3:
struct bla {
struct { int a; int b; };
int c;
};
the type struct bla
has a member of a C11 anonymous structure type.
struct { int a; int b; }
has no tag and the object has no name: it is an anonymous structure type.
You can access the members of the anonymous structure this way:
struct bla myobject;
myobject.a = 1; // a is a member of the anonymous structure inside struct bla
myobject.b = 2; // same for b
myobject.c = 3; // c is a member of the structure struct bla
回答4:
I'm not sure why C11 allows anonymous structures inside structures. But Linux uses it with a certain language extension:
/**
* struct blk_mq_ctx - State for a software queue facing the submitting CPUs
*/
struct blk_mq_ctx {
struct {
spinlock_t lock;
struct list_head rq_lists[HCTX_MAX_TYPES];
} ____cacheline_aligned_in_smp;
/* ... other fields without explicit alignment annotations ... */
} ____cacheline_aligned_in_smp;
I'm not sure if that example strictly necessary, except to make the intent clear.
EDIT: I found another similar pattern which is more clear-cut. The anonymous struct feature is used with this attribute:
#if defined(RANDSTRUCT_PLUGIN) && !defined(__CHECKER__)
#define __randomize_layout __attribute__((randomize_layout))
#define __no_randomize_layout __attribute__((no_randomize_layout))
/* This anon struct can add padding, so only enable it under randstruct. */
#define randomized_struct_fields_start struct {
#define randomized_struct_fields_end } __randomize_layout;
#endif
I.e. a language extension / compiler plugin to randomize field order (ASLR-style exploit "hardening"):
struct kiocb {
struct file *ki_filp;
/* The 'ki_filp' pointer is shared in a union for aio */
randomized_struct_fields_start
loff_t ki_pos;
void (*ki_complete)(struct kiocb *iocb, long ret, long ret2);
void *private;
int ki_flags;
u16 ki_hint;
u16 ki_ioprio; /* See linux/ioprio.h */
unsigned int ki_cookie; /* for ->iopoll */
randomized_struct_fields_end
};
回答5:
Well, if you declare variables from that struct only once in your code, why does it need a name?
struct {
int a;
struct {
int b;
int c;
} d;
} e,f;
And you can now write things like e.a
,f.d.b
,etc.
(I added the inner struct, because I think that this is one of the most usages of anonymous structs)
回答6:
struct Lock;
int lock(Lock*);
...
struct Queue
{
Lock;
char buf[QBUFSIZE];
char *rp;
char *wp;
}
qputc(Queue* q, char c){
lock(q);
...
}
update3: ken c is doing that for a while - for example, for compiling this this and this.
来源:https://stackoverflow.com/questions/8932707/when-are-anonymous-structs-and-unions-useful-in-c11