Spark中的checkpoint作用与用法

六月ゝ 毕业季﹏ 提交于 2019-12-14 23:24:09

【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>>

checkpoint的意思就是建立检查点,类似于快照,例如在spark计算里面 计算流程DAG特别长,服务器需要将整个DAG计算完成得出结果,但是如果在这很长的计算流程中突然中间算出的数据丢失了,spark又会根据RDD的依赖关系从头到尾计算一遍,这样子就很费性能,当然我们可以将中间的计算结果通过cache或者persist放到内存或者磁盘中,但是这样也不能保证数据完全不会丢失,存储的这个内存出问题了或者磁盘坏了,也会导致spark从头再根据RDD计算一遍,所以就有了checkpoint,其中checkpoint的作用就是将DAG中比较重要的中间数据做一个检查点将结果存储到一个高可用的地方(通常这个地方就是HDFS里面)
一般我们先进行cache然后做checkpoint就会只走一次流程,checkpoint的时候就会从刚cache到内存中取数据写入hdfs中
其中作者也说明了,在checkpoint的时候强烈建议先进行cache,并且当你checkpoint执行成功了,那么前面所有的RDD依赖都会被销毁

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!