I have several data frames in panel data form. Now I want to merge these panel data frames into one panel data. These data frames have common and different between them. I illustrate as follows:
df1:
Month variable Beta1 Beta2 Beta3 Beta4 Beta5 Beta6
Jan-05 A 1 2 3 4 5 6
Feb-05 A 2 3 4 5 6 7
Mar-05 A 3 4 5 6 7 8
Apr-05 A 4 5 6 7 8 9
May-05 A 5 6 7 8 9 10
Jun-05 A 6 7 8 9 10 11
Jul-05 A 7 8 9 10 11 12
Aug-05 A 8 9 10 11 12 13
Sep-05 A 9 10 11 12 13 14
Oct-05 A 10 11 12 13 14 15
Nov-05 A 11 12 13 14 15 16
Dec-05 A 12 13 14 15 16 17
Jan-05 B 12 12 12 12 12 12
Feb-05 B 12 12 12 12 12 12
Mar-05 B 12 12 12 12 12 12
Apr-05 B 12 12 12 12 12 12
May-05 B 12 12 12 12 12 12
Jun-05 B 12 12 12 12 12 12
Jul-05 B 12 12 12 12 12 12
Aug-05 B 12 12 12 12 12 12
Sep-05 B 12 12 12 12 12 12
Oct-05 B 12 12 12 12 12 12
Nov-05 B 12 12 12 12 12 12
Dec-05 B 12 12 12 12 12 12
df2:
Month variable Beta1 Beta2 Beta3 Beta4 Beta5 Beta6
Jan-06 A 1 2 3 4 5 6
Feb-06 A 2 3 4 5 6 7
Mar-06 A 3 4 5 6 7 8
Apr-06 A 4 5 6 7 8 9
May-06 A 5 6 7 8 9 10
Jun-06 A 6 7 8 9 10 11
Jul-06 A 7 8 9 10 11 12
Aug-06 A 8 9 10 11 12 13
Sep-06 A 9 10 11 12 13 14
Oct-06 A 10 11 12 13 14 15
Nov-06 A 11 12 13 14 15 16
Dec-06 A 12 13 14 15 16 17
Jan-06 C 12 12 12 12 12 12
Feb-06 C 12 12 12 12 12 12
Mar-06 C 12 12 12 12 12 12
Apr-06 C 12 12 12 12 12 12
May-06 C 12 12 12 12 12 12
Jun-06 C 12 12 12 12 12 12
Jul-06 C 12 12 12 12 12 12
Aug-06 C 12 12 12 12 12 12
Sep-06 C 12 12 12 12 12 12
Oct-05 C 12 12 12 12 12 12
Nov-05 C 12 12 12 12 12 12
Dec-05 C 12 12 12 12 12 12
The desired output is as follows, I want to merge the panel data frames such that each variable arranged chronically and if the data is unable for a year then it is it has NAs under the Beta1, Beta2 and so on.
Month variable Beta1 Beta2 Beta3 Beta4 Beta5 Beta6
Jan-05 A 1 2 3 4 5 6
Feb-05 A 2 3 4 5 6 7
Mar-05 A 3 4 5 6 7 8
Apr-05 A 4 5 6 7 8 9
May-05 A 5 6 7 8 9 10
Jun-05 A 6 7 8 9 10 11
Jul-05 A 7 8 9 10 11 12
Aug-05 A 8 9 10 11 12 13
Sep-05 A 9 10 11 12 13 14
Oct-05 A 10 11 12 13 14 15
Nov-05 A 11 12 13 14 15 16
Dec-05 A 12 13 14 15 16 17
Jan-06 A 1 2 3 4 5 6
Feb-06 A 2 3 4 5 6 7
Mar-06 A 3 4 5 6 7 8
Apr-06 A 4 5 6 7 8 9
May-06 A 5 6 7 8 9 10
Jun-06 A 6 7 8 9 10 11
Jul-06 A 7 8 9 10 11 12
Aug-06 A 8 9 10 11 12 13
Sep-06 A 9 10 11 12 13 14
Oct-06 A 10 11 12 13 14 15
Nov-06 A 11 12 13 14 15 16
Dec-06 A 12 13 14 15 16 17
Jan-05 B 12 12 12 12 12 12
Feb-05 B 12 12 12 12 12 12
Mar-05 B 12 12 12 12 12 12
Apr-05 B 12 12 12 12 12 12
May-05 B 12 12 12 12 12 12
Jun-05 B 12 12 12 12 12 12
Jul-05 B 12 12 12 12 12 12
Aug-05 B 12 12 12 12 12 12
Sep-05 B 12 12 12 12 12 12
Oct-05 B 12 12 12 12 12 12
Nov-05 B 12 12 12 12 12 12
Dec-05 B 12 12 12 12 12 12
Jan-06 B NA NA NA NA NA NA
Feb-06 B NA NA NA NA NA NA
Mar-06 B NA NA NA NA NA NA
Apr-06 B NA NA NA NA NA NA
May-06 B NA NA NA NA NA NA
Jun-06 B NA NA NA NA NA NA
Jul-06 B NA NA NA NA NA NA
Aug-06 B NA NA NA NA NA NA
Sep-06 B NA NA NA NA NA NA
Oct-06 B NA NA NA NA NA NA
Nov-06 B NA NA NA NA NA NA
Dec-06 B NA NA NA NA NA NA
Jan-05 C NA NA NA NA NA NA
Feb-05 C NA NA NA NA NA NA
Mar-05 C NA NA NA NA NA NA
Apr-05 C NA NA NA NA NA NA
May-05 C NA NA NA NA NA NA
Jun-05 C NA NA NA NA NA NA
Jul-05 C NA NA NA NA NA NA
Aug-05 C NA NA NA NA NA NA
Sep-05 C NA NA NA NA NA NA
Oct-05 C NA NA NA NA NA NA
Nov-05 C NA NA NA NA NA NA
Dec-05 C NA NA NA NA NA NA
Jan-06 C 12 12 12 12 12 12
Feb-06 C 12 12 12 12 12 12
Mar-06 C 12 12 12 12 12 12
Apr-06 C 12 12 12 12 12 12
May-06 C 12 12 12 12 12 12
Jun-06 C 12 12 12 12 12 12
Jul-06 C 12 12 12 12 12 12
Aug-06 C 12 12 12 12 12 12
Sep-06 C 12 12 12 12 12 12
Oct-06 C 12 12 12 12 12 12
Nov-06 C 12 12 12 12 12 12
Dec-06 C 12 12 12 12 12 12
As I mentioned earlier that I several data frames and merging them would probably result in hundred thousand rows, so I could I tackle the memory and space issues. I would really appreciate your help.
There's a function for that. Combine the data frames with rbind
. Then use complete
. It will look through the groups in variable
and fill any with missing values:
library(tidyr)
df3 <- do.call(rbind.data.frame, list(df1, df2))
df3$Month <- as.character(df3$Month)
df4 <- complete(df3, Month, variable)
df4$Month <- as.yearmon(df4$Month, "%b %Y")
df5 <- df4[order(df4$variable,df4$Month),]
df5
# Source: local data frame [72 x 8]
#
# Month variable Beta1 Beta2 Beta3 Beta4 Beta5 Beta6
# (yrmn) (fctr) (int) (int) (int) (int) (int) (int)
# 1 Jan 2005 A 1 2 3 4 5 6
# 2 Feb 2005 A 2 3 4 5 6 7
# 3 Mar 2005 A 3 4 5 6 7 8
# 4 Apr 2005 A 4 5 6 7 8 9
# 5 May 2005 A 5 6 7 8 9 10
# 6 Jun 2005 A 6 7 8 9 10 11
# 7 Jul 2005 A 7 8 9 10 11 12
# 8 Aug 2005 A 8 9 10 11 12 13
# 9 Sep 2005 A 9 10 11 12 13 14
# 10 Oct 2005 A 10 11 12 13 14 15
# .. ... ... ... ... ... ... ... ...
An alternative implementation with dplyr & tidyr:
library(dplyr)
library(tidyr)
df3 <- bind_rows(df1, df2) %>%
complete(Month, variable)
Two alternative possibilities of which especially the data.table altenative(s) are of interest when speed and memory are an issue:
base R :
Bind the dataframes together into one:
df3 <- rbind(df1,df2)
Create a reference dataframe with all possible combinations of Month
and variable
with expand.grid
:
ref <- expand.grid(Month = unique(df3$Month), variable = unique(df3$variable))
Merge them together with all.x=TRUE
so you make sure the missing combinations are filled with NA-values:
merge(ref, df3, by = c("Month", "variable"), all.x = TRUE)
Or (thanx to @PierreLafortune):
merge(ref, df3, by=1:2, all.x = TRUE)
data.table :
Bind the dataframes into one with 'rbindlist' which returns a 'data.table':
library(data.table)
DT <- rbindlist(list(df1,df2))
Join with a reference to ensure all combinations are present and missing ones are filled with NA:
DT[CJ(Month, variable, unique = TRUE), on = c(Month="V1", variable="V2")]
Everything together in one call:
DT <- rbindlist(list(df1,df2))[CJ(Month, variable, unique = TRUE), on = c(Month="V1", variable="V2")]
An alternative is wrapping rbindlist
in setkey
and then expanding with CJ
(cross join):
DT <- setkey(rbindlist(list(df1,df2)), Month, variable)[CJ(Month, variable, unique = TRUE)]
来源:https://stackoverflow.com/questions/35610652/merge-panel-data-to-get-balanced-panel-data