问题
I'm currently doing my honours research project on online/dynamic signature verification. I am using the SVC 2004 dataset (Task 2). I have done the following data processing:
def load_dataset_normalized(path):
file_names = os.listdir(path)
num_of_persons = len(file_names)
initial_starting_point = np.zeros(np.shape([7]))
x_dataset = []
y_dataset = []
for infile in file_names:
full_file_name = os.path.join(path, infile)
file = open(full_file_name, "r")
file_lines = file.readlines()
num_of_points = int(file_lines[0])
x = []
y = []
time_stamp = []
button_status = []
azimuth_angles = []
altitude = []
pressure = []
for idx, line in enumerate(file_lines[1:]):
idx+=1
nums = line.split(' ')
if idx == 1:
nums[2] = 0
initial_starting_point = nums
x.append(int(nums[0]))
y.append(int(nums[1]))
time_stamp.append(0)
button_status.append(int(nums[3]))
azimuth_angles.append(int(nums[4]))
altitude.append(int(nums[5]))
pressure.append(int(nums[6]))
else:
x.append(int(nums[0]))
y.append(int(nums[1]))
time_stamp.append(10)
button_status.append(int(nums[3]))
azimuth_angles.append(int(nums[4]))
altitude.append(int(nums[5]))
pressure.append(int(nums[6]))
max_x = max(x)
max_y = max(y)
max_azimuth_angle = max(azimuth_angles)
max_altitude = max(altitude)
max_pressure = max(pressure)
min_x = min(x)
min_y = min(y)
min_azimuth_angle = min(azimuth_angles)
min_altitude = min(altitude)
min_pressure = min(pressure)
#Alignment normalization:
for i in range(num_of_points):
x[i] -= int(initial_starting_point[0])
y[i] -= int(initial_starting_point[1])
azimuth_angles[i] -= int(initial_starting_point[4])
altitude[i] -= int(initial_starting_point[5])
pressure[i] -= int(initial_starting_point[6])
#Size normalization
for i in range(num_of_points):
x[i] = ((x[i] - max_x) / (min_x - max_x))
y[i] = ((y[i] - max_y) / (min_y - max_y))
azimuth_angles[i] = ((azimuth_angles[i] - max_azimuth_angle) / (min_azimuth_angle - max_azimuth_angle))
altitude[i] = ((altitude[i] - max_altitude) / (min_altitude - max_altitude))
pressure[i] = ((pressure[i] - max_pressure) / (min_pressure - max_pressure))
#data points to dataset
x_line = []
for i in range (num_of_points):
x_line.append([x[i], y[i], time_stamp[i], button_status[i], azimuth_angles[i], altitude[i], pressure[i]])
if i == num_of_points-1:
x_dataset.append(x_line)
infile_without_extension = infile.replace('.TXT','')
index_of_s = infile_without_extension.find("S")
index_of_num = index_of_s + 1
sig_ID = int(infile_without_extension[index_of_num:])
if sig_ID < 21:
y_dataset.append([1,0])
else:
y_dataset.append([0,1])
x_dataset = np.asarray(x_dataset)
y_dataset = np.asarray(y_dataset)
return x_dataset, y_dataset
I also have another method that takes the values as they are in the text file and created an "original" dataset.
Now, the aim of my research is to create a CRNN (convolutional recurrent neural network) that can identify if a signature is authentic or forged. Here is the code for the model:
class crnn_model:
def __init__(self, trainX, trainy, testX, testy, optimizer_method):
self.trainX = trainX
self.trainy = trainy
self.testX = testX
self.testy = testy
self.evaluate_model(optimizer_method)
def evaluate_model(self, optimizer_method):
verbose, epochs, batch_size = 0, 40, 10
n_timesteps, n_features, n_outputs = len(self.trainX), 7, 2
print(n_timesteps)
model = keras.Sequential()
model.add(keras.layers.Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(n_timesteps, n_features), use_bias=True))
model.add(keras.layers.Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.MaxPooling1D(pool_size=2))
model.add(keras.layers.Flatten())
model.add(keras.layers.LSTM(2, input_shape=[30592,1], return_sequences=True))
model.summary()
# Compile the model
model.compile(optimizer=optimizer_method, loss='categorical_crossentropy', metrics=['accuracy'])
#fit model
model.fit(self.trainX, self.trainy, epochs=epochs, batch_size=batch_size, verbose=verbose)
# evaluate model
_, accuracy = model.evaluate(self.testX, self.testy, batch_size=batch_size, verbose=0)
return accuracy
Here is the problem I am having: the number of points used to store each signature is different, hence making the input height of the input matrix vary from one signature to the next. Must I now force the dataset to some uniform/constant number of points?
Much appreciated for your time.
来源:https://stackoverflow.com/questions/57759627/must-the-input-height-of-a-1d-cnn-be-constant