问题
I have an object from a library (numpy.ndarray), in which I've substituted the __iadd__ method for a custom one. If I call object.__iadd__(x), it works as expected. However, object+=x seems to call the old (unsubstituted) method. I wanted to prevent overflows on numpy from occurring on specific cases, so I created a context manager for that. Here's the (still very crude) code:
class NumpyOverflowPreventer( object ):
inverse_operator= { '__iadd__':'__sub__', '__isub__':'__add__', '__imul__': '__div__', '__idiv__':'__mul__'}
def _operate( self, b, forward_operator ):
assert type(b) in (int, float)
reverse_operator= NumpyOverflowPreventer.inverse_operator[forward_operator]
uro= getattr(self.upper_range, reverse_operator)
lro= getattr(self.lower_range, reverse_operator)
afo= self.originals[ forward_operator ]
overflows= self.matrix > uro( b )
underflows= self.matrix < lro( b )
afo( b )
self.matrix[overflows]= self.upper_range
self.matrix[underflows]= self.lower_range
def __init__( self, matrix ):
m= matrix
assert m.dtype==np.uint8
self.matrix= m
self.lower_range= float(0)
self.upper_range= float(2**8-1)
def __enter__( self ):
import functools
self.originals={}
for op in NumpyOverflowPreventer.inverse_operator.keys():
self.originals[ op ] = getattr( self.matrix, op )
setattr( self.matrix, op, functools.partial(self._operate, forward_operator=op))
def __exit__( self, type, value, tb ):
for op in NumpyOverflowPreventer.inverse_operator.keys():
setattr( self.matrix, op, self.originals[ op ] )
running this:
a= np.matrix(255, dtype= np.uint8)
b= np.matrix(255, dtype= np.uint8)
with NumpyOverflowPreventer(a):
a+=1
with NumpyOverflowPreventer(b):
b.__iadd__(1)
print a,b
returns this:
[[0]] [[255]]
回答1:
The issue you are seeing is that the special built-in methods are not looked up on the instance. They are looked up on the matrix
type. So replacing them on the instance will not cause them to be used indirectly.
One way to achieve your goal is to instead make NumpyOverflowPreventer
a wrapper for the operations you want to address...
import numpy as np
import sys
class NumpyOverflowPreventer(object):
inverse_operator= {
'__iadd__': '__sub__',
'__isub__': '__add__',
'__imul__': '__div__',
'__idiv__': '__mul__'
}
def __init__(self, matrix):
m = matrix
assert m.dtype==np.uint8
self.matrix = m
self.lower_range = float(0)
self.upper_range = float(2**8-1)
def __iadd__(self, v):
# dynamic way to get the name "__iadd__"
self._operate(v, sys._getframe().f_code.co_name)
return self
def _operate(self, b, forward_operator):
assert type(b) in (int, float)
reverse_operator = self.inverse_operator[forward_operator]
uro= getattr(self.upper_range, reverse_operator)
lro= getattr(self.lower_range, reverse_operator)
afo= getattr(self.matrix, forward_operator)
overflows= self.matrix > uro( b )
underflows= self.matrix < lro( b )
afo( b )
self.matrix[overflows]= self.upper_range
self.matrix[underflows]= self.lower_range
I have only defined __iadd__
here, and I am sure you could do all of them dynamically with some metaclass/decorator action...but I am keeping it simple.
Usage:
a = np.matrix(255, dtype= np.uint8)
b = np.matrix(255, dtype= np.uint8)
p = NumpyOverflowPreventer(a)
p+=1
p = NumpyOverflowPreventer(b)
p.__iadd__(1)
print a,b
# [[255]] [[255]]
回答2:
In case anyone is interested on the overflow issue, and crediting jdi's and kindall's expertise, it seems the operators must be class methods - thus, a custom class is needed for dynamic method generation. 'I've arrived at the following working prototype (for +=, -=, *=. /=)
class OverflowPreventer( object ):
'''A context manager that exposes a numpy array preventing simple operations from overflowing.
Example:
array= numpy.array( [255], dtype=numpy.uint8 )
with OverflowPreventer( array ) as prevented:
prevented+=1
print array'''
inverse_operator= { '__iadd__':'__sub__', '__isub__':'__add__', '__imul__': '__div__', '__idiv__':'__mul__'}
bypass_operators=['__str__', '__repr__', '__getitem__']
def __init__( self, matrix ):
class CustomWrapper( object ):
def __init__(self, matrix):
assert matrix.dtype==numpy.uint8
self.overflow_matrix= matrix
self.overflow_lower_range= float(0)
self.overflow_upper_range= float(2**8-1)
for op in OverflowPreventer.bypass_operators:
setattr(CustomWrapper, op, getattr(self.overflow_matrix, op))
def _overflow_operator( self, b, forward_operator):
m, lr, ur= self.overflow_matrix, self.overflow_lower_range, self.overflow_upper_range
assert type(b) in (int, float)
reverse_operator= OverflowPreventer.inverse_operator[forward_operator]
uro= getattr( ur, reverse_operator)
lro= getattr( lr, reverse_operator)
afo= getattr( m, forward_operator )
overflows= m > uro( b )
underflows= m < lro( b )
afo( b )
m[overflows]= ur
m[underflows]= lr
return self
def __getattr__(self, attr):
if hasattr(self.wrapped, attr):
return getattr(self.wrapped,attr)
else:
raise AttributeError
self.wrapper= CustomWrapper(matrix)
import functools
for op in OverflowPreventer.inverse_operator.keys():
setattr( CustomWrapper, op, functools.partial(self.wrapper._overflow_operator, forward_operator=op))
def __enter__( self ):
return self.wrapper
def __exit__( self, type, value, tb ):
pass
来源:https://stackoverflow.com/questions/12867114/substituting-iadd-doesnt-work-as-expected-for-operator