Tensorflow: GPU Acceleration only happens after first run

懵懂的女人 提交于 2019-12-12 18:15:39

问题


I've installed CUDA and CUDNN on my machine (Ubuntu 16.04) alongside tensorflow-gpu.

Versions used: CUDA 10.0, CUDNN 7.6, Python 3.6, Tensorflow 1.14


This is the output from nvidia-smi, showing the video card configuration.

| NVIDIA-SMI 410.78       Driver Version: 410.78       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 960M    On   | 00000000:02:00.0 Off |                  N/A |
| N/A   44C    P8    N/A /  N/A |    675MiB /  4046MiB |      0%   E. Process |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1502      G   /usr/lib/xorg/Xorg                           363MiB |
|    0      3281      G   compiz                                        96MiB |
|    0      4375      G   ...uest-channel-token=14359313252217012722    69MiB |
|    0      5157      C   ...felipe/proj/venv/bin/python3.6            141MiB |
+-----------------------------------------------------------------------------+

This is the output from device_lib.list_local_devices() (tensorflow helper method to show what devices it can see), showing that my GPU is visible to tensorflow:

[name: "/device:CPU:0"
  device_type: "CPU"
  memory_limit: 268435456
  locality {
  }
  incarnation: 5096693727819965430, 
name: "/device:XLA_GPU:0"
  device_type: "XLA_GPU"
  memory_limit: 17179869184
  locality {
  }
  incarnation: 13415556283266501672
  physical_device_desc: "device: XLA_GPU device", 
name: "/device:XLA_CPU:0"
  device_type: "XLA_CPU"
  memory_limit: 17179869184
  locality {
  }
  incarnation: 14339781620792127180
  physical_device_desc: "device: XLA_CPU device", 
name: "/device:GPU:0"
  device_type: "GPU"
  memory_limit: 3464953856
  locality {
    bus_id: 1
    links {
    }
  }
  incarnation: 13743207545082600644
  physical_device_desc: "device: 0, name: GeForce GTX 960M, pci bus id: 0000:02:00.0, compute capability: 5.0"
]

Now as for actually using the GPU for computations. I've used a small piece of code to run some dummy matrix multiplications on the CPUs and on the GPUs, to compare the performance:

shapes = [(50, 50), (100, 100), (500, 500), (1000, 1000), (10000,10000), (15000,15000)]

devices = ['/device:CPU:0', '/device:XLA_GPU:0']

for device in devices:
    for shape in shapes:
        with tf.device(device):
            random_matrix = tf.random_uniform(shape=shape, minval=0, maxval=1)
            dot_operation = tf.matmul(random_matrix, tf.transpose(random_matrix))
            sum_operation = tf.reduce_sum(dot_operation)

        # Time the actual runtime of the operations
        start_time = datetime.now()
        with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session:
            result = session.run(sum_operation)
        elapsed_time = datetime.now() - start_time

        # PRINT ELAPSED TIME, SHAPE AND DEVICE USED       

Here is the surprise. The first time I run the cell containing this block of code (I'm on a jupyter notebook), the GPU computations take much longer than the CPU:

# output of first run: CPU is faster
----------------------------------------
Input shape: (50, 50) using Device: /device:CPU:0 took: 0.01
Input shape: (100, 100) using Device: /device:CPU:0 took: 0.01
Input shape: (500, 500) using Device: /device:CPU:0 took: 0.01
Input shape: (1000, 1000) using Device: /device:CPU:0 took: 0.02
Input shape: (10000, 10000) using Device: /device:CPU:0 took: 6.22
Input shape: (15000, 15000) using Device: /device:CPU:0 took: 21.23
----------------------------------------
Input shape: (50, 50) using Device: /device:XLA_GPU:0 took: 2.82
Input shape: (100, 100) using Device: /device:XLA_GPU:0 took: 0.17
Input shape: (500, 500) using Device: /device:XLA_GPU:0 took: 0.18
Input shape: (1000, 1000) using Device: /device:XLA_GPU:0 took: 0.20
Input shape: (10000, 10000) using Device: /device:XLA_GPU:0 took: 28.36
Input shape: (15000, 15000) using Device: /device:XLA_GPU:0 took: 93.73
----------------------------------------

Surprise #2: When I rerun the cell containing the dummy matrix multiplication code, the GPU version is much faster (as expected):

# output of reruns: GPU is faster
----------------------------------------
Input shape: (50, 50) using Device: /device:CPU:0 took: 0.02
Input shape: (100, 100) using Device: /device:CPU:0 took: 0.02
Input shape: (500, 500) using Device: /device:CPU:0 took: 0.02
Input shape: (1000, 1000) using Device: /device:CPU:0 took: 0.04
Input shape: (10000, 10000) using Device: /device:CPU:0 took: 6.78
Input shape: (15000, 15000) using Device: /device:CPU:0 took: 24.65
----------------------------------------
Input shape: (50, 50) using Device: /device:XLA_GPU:0 took: 0.14
Input shape: (100, 100) using Device: /device:XLA_GPU:0 took: 0.12
Input shape: (500, 500) using Device: /device:XLA_GPU:0 took: 0.13
Input shape: (1000, 1000) using Device: /device:XLA_GPU:0 took: 0.14
Input shape: (10000, 10000) using Device: /device:XLA_GPU:0 took: 1.64
Input shape: (15000, 15000) using Device: /device:XLA_GPU:0 took: 5.29
----------------------------------------

So my question is: Why is it that only after I run the code once does GPU acceleration actually occur?

I can see the GPU is correctly set up (otherwise no acceleration would happen at all). Is it due to some sort of initial overhead? Do GPUs need to warm-up before we can actually use them?

P.S.: On both runs (i.e. the one where the GPU was slower and the next ones, where the GPU was faster), I could see GPU Usage was 100%, so it was definitely being used.

P.S.: Only in the very first run does it seem the GPU isn't get picked up. If I then run it two, three or multiple times, all runs after the first one are successful (i.e. GPU computation is faster).


回答1:


robert-crovella's comment made me look into the XLA thing, which helped me find the solution.

Turns out the GPU is mapped to a Tensorflow device in two ways: as XLA device and as a normal GPU.

This is why there were two devices, one named "/device:XLA_GPU:0" and the other "/device:GPU:0".

All I needed to do was to activate "/device:GPU:0" instead. Now the GPU gets picked up by Tensorflow immediately.



来源:https://stackoverflow.com/questions/56999493/tensorflow-gpu-acceleration-only-happens-after-first-run

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!