Meshgrid函数的基本用法

与世无争的帅哥 提交于 2019-12-12 16:22:06

在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度。

可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格。

用法:

  [X,Y]=meshgrid(x,y)

  [X,Y]=meshgrid(x)与[X,Y]=meshgrid(x,x)是等同的

  [X,Y,Z]=meshgrid(x,y,z)生成三维数组,可用来计算三变量的函数和绘制三维立体图

这里,主要以[X,Y]=meshgrid(x,y)为例,来对该函数进行介绍。

[X,Y] = meshgrid(x,y) 将向量x和y定义的区域转换成矩阵X和Y,其中矩阵X的行向量是向量x的简单复制,而矩阵Y的列向量是向量y的简单复制(注:下面代码中X和Y均是数组,在文中统一称为矩阵了)。

假设x是长度为m的向量,y是长度为n的向量,则最终生成的矩阵X和Y的维度都是 nm (注意不是mn)。

文字描述可能不是太好理解,下面通过代码演示下:

加载数据

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
m, n = (5, 3)
x = np.linspace(0, 1, m)
y = np.linspace(0, 1, n)
X, Y = np.meshgrid(x,y)

 

查看向量x和向量y

x
out:
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
y
out:
array([ 0. , 0.5, 1. ])

 

查看矩阵X和矩阵Y

X
out:
array([[ 0. , 0.25, 0.5 , 0.75, 1. ],
[ 0. , 0.25, 0.5 , 0.75, 1. ],
[ 0. , 0.25, 0.5 , 0.75, 1. ]])
Y
out:
array([[ 0. , 0. , 0. , 0. , 0. ],
[ 0.5, 0.5, 0.5, 0.5, 0.5],
[ 1. , 1. , 1. , 1. , 1. ]])

 

查看矩阵对应的维度

X.shape
out:
(3, 5)
Y.shape
out:
(3, 5)

 

meshgrid函数的运行过程,可以通过下面的示意图来加深理解:

 

再者,也可以通过在matplotlib中进行可视化,来查看函数运行后得到的网格化数据的结果

plt.plot(X, Y, marker='.', color='blue', linestyle='none')
plt.show()

 

 

当然,我们也可以获得网格平面上坐标点的数据,如下:

z = [i for i in zip(X.flat,Y.flat)]
z
out:
[(0.0, 0.0),
(0.25, 0.0),
(0.5, 0.0),
(0.75, 0.0),
(1.0, 0.0),
(0.0, 0.5),
(0.25, 0.5),
(0.5, 0.5),
(0.75, 0.5),
(1.0, 0.5),
(0.0, 1.0),
(0.25, 1.0),
(0.5, 1.0),
(0.75, 1.0),
(1.0, 1.0)]

 

Meshgrid函数的一些应用场景

Meshgrid函数常用的场景有等高线绘制及机器学习中SVC超平面的绘制(二维场景下)。

分别图示如下:

(1)等高线

 

(2)SVC中超平面的绘制:

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!