问题
I have the following test code:
from pyspark import SparkContext, SQLContext
sc = SparkContext('local')
sqlContext = SQLContext(sc)
print('Created spark context!')
if __name__ == '__main__':
df = sqlContext.read.format("jdbc").options(
url="jdbc:mysql://localhost/mysql",
driver="com.mysql.jdbc.Driver",
dbtable="users",
user="user",
password="****",
properties={"driver": 'com.mysql.jdbc.Driver'}
).load()
print(df)
When I run it, I get the following error:
java.lang.ClassNotFoundException: com.mysql.jdbc.Driver
In Scala, this is solved by importing the .jar mysql-connector-java
into the project.
However, in python I have no idea how to tell the pyspark module to link the mysql-connector file.
I have seen this solved with examples like
spark --package=mysql-connector-java testfile.py
But I don't want this since it forces me to run my script in a weird way. I would like an all python solution or copy a file somewhere or, add something to the Path.
回答1:
You can pass arguments to spark-submit
when creating your sparkContext
before SparkConf
is initialized:
import os
from pyspark import SparkConf, SparkContext
SUBMIT_ARGS = "--packages mysql:mysql-connector-java:5.1.39 pyspark-shell"
os.environ["PYSPARK_SUBMIT_ARGS"] = SUBMIT_ARGS
conf = SparkConf()
sc = SparkContext(conf=conf)
or you can add them to your $SPARK_HOME/conf/spark-defaults.conf
回答2:
from pyspark.sql import SparkSession
spark = SparkSession\
.builder\
.appName("Word Count")\
.config("spark.driver.extraClassPath", "/home/tuhin/mysql.jar")\
.getOrCreate()
dataframe_mysql = spark.read\
.format("jdbc")\
.option("url", "jdbc:mysql://localhost/database_name")\
.option("driver", "com.mysql.jdbc.Driver")\
.option("dbtable", "employees").option("user", "root")\
.option("password", "12345678").load()
print(dataframe_mysql.columns)
"/home/tuhin/mysql.jar" is the location of mysql jar file
回答3:
If you are using pycharm and want to run line by line instead of submitting your .py through spark-submit, you can copy your .jar to c:\spark\jars\ and your code could be like:
from pyspark import SparkConf, SparkContext, sql
from pyspark.sql import SparkSession
sc = SparkSession.builder.getOrCreate()
sqlContext = sql.SQLContext(sc)
source_df = sqlContext.read.format('jdbc').options(
url='jdbc:mysql://localhost:3306/database1',
driver='com.mysql.cj.jdbc.Driver', #com.mysql.jdbc.Driver
dbtable='table1',
user='root',
password='****').load()
print (source_df)
source_df.show()
来源:https://stackoverflow.com/questions/46023259/mysql-read-with-pyspark