问题
Say I have a slice like x[p:-q:n]
or x[::n]
I want to use this to generate the index to be passed into numpy.ufunc.reduceat(x, [p, p + n, p + 2 * n, ...])
or numpy.ufunc.reduceat(x, [0, n, 2 * n, ...])
. What is the easiest and efficient way to get it done?
回答1:
Building on the comments:
In [351]: x=np.arange(100)
In [352]: np.r_[0:100:10]
Out[352]: array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])
In [353]: np.add.reduceat(x,np.r_[0:100:10])
Out[353]: array([ 45, 145, 245, 345, 445, 545, 645, 745, 845, 945], dtype=int32)
In [354]: np.add.reduceat(x,np.arange(0,100,10))
Out[354]: array([ 45, 145, 245, 345, 445, 545, 645, 745, 845, 945], dtype=int32)
In [355]: np.add.reduceat(x,list(range(0,100,10)))
Out[355]: array([ 45, 145, 245, 345, 445, 545, 645, 745, 845, 945], dtype=int32)
In [356]: x.reshape(-1,10).sum(axis=1)
Out[356]: array([ 45, 145, 245, 345, 445, 545, 645, 745, 845, 945])
and timing:
In [357]: timeit np.add.reduceat(x,np.r_[0:100:10])
The slowest run took 9.30 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 31.2 µs per loop
In [358]: timeit np.add.reduceat(x,np.arange(0,100,10))
The slowest run took 85.75 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 6.69 µs per loop
In [359]: timeit np.add.reduceat(x,list(range(0,100,10)))
The slowest run took 4.31 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 11.9 µs per loop
In [360]: timeit x.reshape(-1,10).sum(axis=1)
The slowest run took 5.57 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 11.5 µs per loop
reduceat
with arange
looks best, but it should be tested on more realistic data. Speeds aren't that different at this size.
The value of r_
is that it lets you use the convenient slicing notation; it's in a file called index_tricks.py
.
With a 10000 element x
, times are 80, 46, 238, 51.
来源:https://stackoverflow.com/questions/41595807/how-can-a-numpy-ufunc-reduceat-indices-be-generated-from-python-slice-object