问题
I'm trying to use the Pipeline
class from imblearn
and GridSearchCV
to get the best parameters for classifying the imbalanced dataset. As per the answers mentioned here, I want to leave out resampling of the validation set and only resample the training set, which imblearn
's Pipeline
seems to be doing. However, I'm getting an error while implementing the accepted solution. Please let me know what am I doing wrong. Below is my implementation:
def imb_pipeline(clf, X, y, params):
model = Pipeline([
('sampling', SMOTE()),
('classification', clf)
])
score={'AUC':'roc_auc',
'RECALL':'recall',
'PRECISION':'precision',
'F1':'f1'}
gcv = GridSearchCV(estimator=model, param_grid=params, cv=5, scoring=score, n_jobs=12, refit='F1',
return_train_score=True)
gcv.fit(X, y)
return gcv
for param, classifier in zip(params, classifiers):
print("Working on {}...".format(classifier[0]))
clf = imb_pipeline(classifier[1], X_scaled, y, param)
print("Best parameter for {} is {}".format(classifier[0], clf.best_params_))
print("Best `F1` for {} is {}".format(classifier[0], clf.best_score_))
print('-'*50)
print('\n')
params:
[{'penalty': ('l1', 'l2'), 'C': (0.01, 0.1, 1.0, 10)},
{'n_neighbors': (10, 15, 25)},
{'n_estimators': (80, 100, 150, 200), 'min_samples_split': (5, 7, 10, 20)}]
classifiers:
[('Logistic Regression',
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)),
('KNearestNeighbors',
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=5, p=2,
weights='uniform')),
('Gradient Boosting Classifier',
GradientBoostingClassifier(criterion='friedman_mse', init=None,
learning_rate=0.1, loss='deviance', max_depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_iter_no_change=None, presort='auto',
random_state=None, subsample=1.0, tol=0.0001,
validation_fraction=0.1, verbose=0,
warm_start=False))]
Error:
ValueError: Invalid parameter C for estimator Pipeline(memory=None,
steps=[('sampling',
SMOTE(k_neighbors=5, kind='deprecated',
m_neighbors='deprecated', n_jobs=1,
out_step='deprecated', random_state=None, ratio=None,
sampling_strategy='auto', svm_estimator='deprecated')),
('classification',
LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True, intercept_scaling=1,
l1_ratio=None, max_iter=100,
multi_class='warn', n_jobs=None,
penalty='l2', random_state=None,
solver='warn', tol=0.0001, verbose=0,
warm_start=False))],
verbose=False). Check the list of available parameters with `estimator.get_params().keys()`. """
回答1:
Please check this example how to use parameters with a Pipeline: - https://scikit-learn.org/stable/auto_examples/compose/plot_compare_reduction.html#sphx-glr-auto-examples-compose-plot-compare-reduction-py
Whenever using the pipeline, you will need to send the parameters in a way so that pipeline can understand which parameter is for which of the step in the list. For that it uses the name you provided during Pipeline initialisation.
In your code, for example:
model = Pipeline([
('sampling', SMOTE()),
('classification', clf)
])
To pass the parameter p1 to SMOTE you would use sampling__p1
as a parameter, not p1
.
You used "classification"
as a name for your clf
so append that to the parameters which are supposed to go to the clf
.
Try:
[{'classification__penalty': ('l1', 'l2'), 'classification__C': (0.01, 0.1, 1.0, 10)},
{'classification__n_neighbors': (10, 15, 25)},
{'classification__n_estimators': (80, 100, 150, 200), 'min_samples_split': (5, 7, 10, 20)}]
Make sure there are two underscores between the name and the parameter.
来源:https://stackoverflow.com/questions/58815016/cross-validating-with-imblearn-pipeline-and-gridsearchcv