python基础之面试常问

匆匆过客 提交于 2019-11-27 02:41:09

python面试常问


python相对其他语言有什么特点?


python内存管理机制,gc机制的了解,gc回收三种算法。

python内存管理(原博文——python内存管理

  • python是动态语言,对象与引用分类,一个变量使用不需要事先声明,而在赋值时,变量可以重新赋值为任意值。

  • python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。当我们创建多个等于1的引用时,实际上是让所有这些引用指向同一个对象。(可以通过is判断是不是同一个对象)

  • 在python中,每个对象都有存有指向该对象的引用总数,即引用计数(reference count)。我们可以使用sys包中的getrefcount(),来查看某个对象的引用计数。需要注意的是,当使用某个引用作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用。因此,getrefcount()所得到的结果,会比期望的多1。

  • python的一个容器对象(container),比如表、词典等,可以包含多个对象。实际上,容器对象中包含的并不是元素对象本身,是指向各个元素对象的引用。

  • python中对象可以引用对象,对象的相互引用会构成引用环。

  • 引用减少的情况:1. del删除某一个对象的引用;2. 如果某个引用指向对象A,当这个引用重新被定义到其他对象时,引用数减少。

python垃圾回收

  • 从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。但是,垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收。所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。

  • 我们可以通过gc模块的get_threshold()方法,查看该阈值:

    import gc
    print(gc.get_threshold())

    返回(700, 10, 10),后面的两个10是与分代回收相关的阈值,后面可以看到。700即是垃圾回收启动的阈值。可以通过gc中的set_threshold()方法重新设置。我们也可以手动启动垃圾回收,即使用gc.collect()。

  • 分代回收: python同时采用了分代(generation)回收的策略。这一策略的基本假设是,存活时间越久的对象,越不可能在后面的程序中变成垃圾。我们的程序往往会产生大量的对象,许多对象很快产生和消失,但也有一些对象长期被使用。出于信任和效率,对于这样一些“长寿”对象,我们相信它们的用处,所以减少在垃圾回收中扫描它们的频率。python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象。如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定次数的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描。这两个次数即上面get_threshold()返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收。同样可以用set_threshold()来调整,比如对2代对象进行更频繁的扫描。

  • 孤立的引用环: 引用环的存在会给上面的垃圾回收机制带来很大的困难。这些引用环可能构成无法使用,但引用计数不为0的一些对象。比如我们创建了两个表对象,并引用对方,构成一个引用环。删除了a,b引用之后,这两个对象不可能再从程序中调用,就没有什么用处了。但是由于引用环的存在,这两个对象的引用计数都没有降到0,不会被垃圾回收。

    a = []
    b = [a]
    a.append(b)
    
    del a
    del b

    为了回收这样的引用环,python复制每个对象的引用计数,可以记为gc_ref。假设,每个对象i,该计数为gc_ref_i。python会遍历所有的对象i。对于每个对象i引用的对象j,将相应的gc_ref_j减1。在结束遍历后,gc_ref不为0的对象,和这些对象引用的对象,以及继续更下游引用的对象,需要被保留。而其它的对象则被垃圾回收。


lambda函数

lambda作为一个表达式,定义了一个匿名函数。lambda表达式是起到一个函数速写的作用,允许在代码内嵌入一个函数的定义。例如:

func1 = lambda x,y:x+y

def func2(x,y):
    return x+y

func1和func2其实作用相同。

lambda的优点是代码比较简洁,缺点是易读性不好。


高级函数 map、reduce、filter、sorted等。

菜鸟教程——python内置函数

map()

map() 会根据提供的函数对指定序列做映射。第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。

map(function, iterable,...)

返回值:python 2.x返回列表,python3.x返回迭代器。

以python3为例:

a = map(lambda x:x**2,[1,2,3,4])
print(a)
print(list(a))

输出:

<map object at 0x000001EB55F4C710>
[1, 4, 9, 16]

filter()

filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。

# 第一个参数是判断函数,第二个参数是可迭代对象
filter(function, iterable)

实例:

a = filter(lambda x:x%2==0,[1,2,3,4])
print(a)
print(list(a))

输出:

<filter object at 0x000001EB55F44F60>
[2, 4]

reduce()

reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 function,一个可迭代对象,但行为和 map()不同,reduce()传入的函数必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。

在python3中,reduce()函数已经从全局函数中移除了,放在fucntools,所以我们首先得导入从fucntools中导入reduce()函数。

reduce(function, iterable)

实例:

from functools import reduce
sum = reduce(lambda x,y:x+y,[1,3,5,7,9])
print(sum)

输出:

25

简述python中list、tuple以及dict。


python中深拷贝与浅拷贝。


python中is和==的区别。


python中if __ name ==' main __'有什么含义?


python命令和python -m命令在执行脚本时的区别?


python中多进程、多线程、携程。


python中迭代器、生成器与装饰器。


python中单引号、双引号、三引号的应用场景与区别。


python如何体现面对对象的三大特性。


python中异常管理的机制。

python函数闭包。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!