问题
I've generated a bunch of data for the (x,y,z) coordinates of a planet as it orbits around the Sun. Now I want to fit an ellipse through this data.
What I tried to do:
I created a dummy ellipse based on five parameters: The semi-major axis & eccentricity that defines the size & shape and the three euler angles that rotate the ellipse around. Since my data is not always centered at origin I also need to translate the ellipse requiring additional three variables (dx,dy,dz). Once I initialise this function with these eight variables I get back N number of points that lie on this ellipse. (N = number of data points I am plotting the ellipse through) I calculate the deviation of these dummy points from the actual data and then I minimise this deviation using some minimisation method to find the best fitting values for these eight variables.
My problem is with the very last part: minimising the deviation and finding the variables' values.
To minimise the deviation I use scipy.optimize.minimize to try and approximate the best fitting variables but it just doesn't do good enough of a job:
Here is an image of what one of my best fits looks like and that's with a very generously accurate initial guess. (blue = data, red = fit)Here is the entire code. (No data required, it generates its own phony data)
In short, I use this scipy function:
initial_guess = [0.3,0.2,0.1,0.7,3,0.0,-0.1,0.0]
bnds = ((0.2, 0.5), (0.1, 0.3), (0, 2*np.pi), (0, 2*np.pi), (0, 2*np.pi), (-0.5,0.5), (-0.5,0.5), (-0.3,0.3)) #reasonable bounds for the variables
result = optimize.minimize(deviation, initial_guess, args=(data,), method='L-BFGS-B', bounds=bnds, tol=1e-8) #perform minimalisation
semi_major,eccentricity,inclination,periapsis,longitude,dx,dy,dz = result["x"]
To minimize this error (or deviation) function:
def deviation(variables, data):
"""
This function calculates the cumulative seperation between the ellipse fit points and data points and returns it
"""
num_pts = len(data[:,0])
semi_major,eccentricity,inclination,periapsis,longitude,dx,dy,dz = variables
dummy_ellipse = generate_ellipse(num_pts,semi_major,eccentricity,inclination,periapsis,longitude,dz,dy,dz)
deviations = np.zeros(len(data[:,0]))
pair_deviations = np.zeros(len(data[:,0]))
# Calculate separation between each pair of points
for j in range(len(data[:,0])):
for i in range(len(data[:,0])):
pair_deviations[i] = np.sqrt((data[j,0]-dummy_ellipse[i,0])**2 + (data[j,1]-dummy_ellipse[i,1])**2 + (data[j,2]-dummy_ellipse[i,2])**2)
deviations[j] = min(pair_deviations) # only pick the closest point to the data point j.
total_deviation = sum(deviations)
return total_deviation
(My code may be a bit messy & inefficient, I'm new to this)
I may be making some logical error in my coding but I think it comes down to the scipy.minimize.optimize function. I don't know enough about how it works and what to expect of it. I was also recommended to try Markov chain Monte Carlo when dealing with this many variables. I did take a look at the emcee, but it's a little above my head right now.
回答1:
First, you have a typo in your objective function that prevents optimization of one of the variables:
dummy_ellipse = generate_ellipse(...,dz,dy,dz)
should be
dummy_ellipse = generate_ellipse(...,dx,dy,dz)
Also, taking sqrt
out and minimizing the sum of squared euclidean distances makes it numerically somewhat easier for the optimizer.
Your objective function is also not everywhere differentiable because of the min(), as assumed by the BFGS solver, so its performance will be suboptimal.
Also, approaching the problem from analytical geometry perspective may help: an ellipse in 3d is defined as a solution of two equations
f1(x,y,z,p) = 0
f2(x,y,z,p) = 0
Where p
are the parameters of the ellipse. Now, to fit the parameters to a data set, you could try to minimize
F(p) = sum_{j=1}^N [f1(x_j,y_j,z_j,p)**2 + f2(x_j,y_j,z_j,p)**2]
where the sum goes over data points.
Even better, in this problem formulation you could use optimize.leastsq
, which may be more efficient in least squares problems.
来源:https://stackoverflow.com/questions/28963126/fitting-an-ellipse-through-orbital-data