How to plot predicted values with standard errors for lmer model results?

纵饮孤独 提交于 2019-12-10 16:09:56

问题


I have a transplant experiment for four locations and four substrates (taken from each location). I have determined survival for each population in each location and substrate combination. This experiment was replicated three times.

I have created a lmm as follows:

Survival.model <- lmer(Survival ~ Location + Substrate + Location:Substrate + (1|Replicate), data=Transplant.Survival,, REML = TRUE)

I would like to use the predict command to extract predictions, for example:

Survival.pred <- predict(Survival.model)

Then extract standard errors so that I can plot them with the predictions to generate something like the following plot:

I know how to do this with a standard glm (which is how I created the example plot), but am not sure if I can or should do this with an lmm.

Can I do this or am I as a new user of linear mixed models missing something fundamental?

I did find this post on Stack Overflow which was not helpful.

Based on a comment from RHertel, maybe I should have phrased the question: How do I plot model estimates and confidence intervals for my lmer model results so that I can get a similar plot to the one I have created above?

Sample Data:

Transplant.Survival <- structure(list(Location = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("Steninge", "Molle", 
"Kampinge", "Kaseberga"), class = "factor"), Substrate = structure(c(1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 2L, 2L, 2L, 3L, 
3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 
4L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L), .Label = c("Steninge", 
"Molle", "Kampinge", "Kaseberga"), class = "factor"), Replicate = structure(c(1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("1", 
"2", "3"), class = "factor"), Survival = c(1, 1, 1, 0.633333333333333, 
0.966666666666667, 0.5, 0.3, 0.233333333333333, 0.433333333333333, 
0.966666666666667, 0.866666666666667, 0.5, 0.6, 0.266666666666667, 
0.733333333333333, 0.6, 0.3, 0.5, 0.3, 0.633333333333333, 0.9, 
0.266666666666667, 0.633333333333333, 0.7, 0.633333333333333, 
0.833333333333333, 0.9, 0.6, 0.166666666666667, 0.333333333333333, 
0.433333333333333, 0.6, 0.9, 0.6, 0.133333333333333, 0.566666666666667, 
0.633333333333333, 0.633333333333333, 0.766666666666667, 0.766666666666667, 
0.0333333333333333, 0.733333333333333, 0.3, 1.03333333333333, 
0.6, 1)), .Names = c("Location", "Substrate", "Replicate", "Survival"
), class = "data.frame", row.names = c(NA, -46L))

回答1:


Edit: fixed bug in function / figure.

If you like to plot estimates with CI, you may want to look at the sjp.lmer function in the sjPlot package. See some example of the various plot types here.

Furthermore, the arm package provides function for computing standard Errors (arm::se.fixef and arm::se.ranef)

sjp.setTheme("forestgrey") # plot theme
sjp.lmer(Survival.model, type = "fe")

would give following plot



来源:https://stackoverflow.com/questions/32196641/how-to-plot-predicted-values-with-standard-errors-for-lmer-model-results

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!