Cumsum reset at NaN

徘徊边缘 提交于 2019-11-27 01:36:53

A simple Numpy translation of your Matlab code is this:

import numpy as np

v = np.array([1., 1., 1., np.nan, 1., 1., 1., 1., np.nan, 1.])
n = np.isnan(v)
a = ~n
c = np.cumsum(a)
d = np.diff(np.concatenate(([0.], c[n])))
v[n] = -d
np.cumsum(v)

Executing this code returns the result array([ 1., 2., 3., 0., 1., 2., 3., 4., 0., 1.]). This solution will only be as valid as the original one, but maybe it will help you come up with something better if it isn't sufficient for your purposes.

Here's a slightly more pandas-onic way to do it:

v = Series([1, 1, 1, nan, 1, 1, 1, 1, nan, 1], dtype=float)
n = v.isnull()
a = ~n
c = a.cumsum()
index = c[n].index  # need the index for reconstruction after the np.diff
d = Series(np.diff(np.hstack(([0.], c[n]))), index=index)
v[n] = -d
result = v.cumsum()

Note that either of these requires that you're using pandas at least at 9da899b or newer. If you aren't then you can cast the bool dtype to an int64 or float64 dtype:

v = Series([1, 1, 1, nan, 1, 1, 1, 1, nan, 1], dtype=float)
n = v.isnull()
a = ~n
c = a.astype(float).cumsum()
index = c[n].index  # need the index for reconstruction after the np.diff
d = Series(np.diff(np.hstack(([0.], c[n]))), index=index)
v[n] = -d
result = v.cumsum()

Even more pandas-onic way to do it:

v = pd.Series([1., 3., 1., np.nan, 1., 1., 1., 1., np.nan, 1.])
cumsum = v.cumsum().fillna(method='pad')
reset = -cumsum[v.isnull()].diff().fillna(cumsum)
result = v.where(v.notnull(), reset).cumsum()

Contrary to the matlab code, this also works for values different from 1.

If you can accept a similar boolean Series b, try

(b.cumsum() - b.cumsum().where(~b).fillna(method='pad').fillna(0)).astype(int)

Starting from your Series ts, either b = (ts == 1) or b = ~ts.isnull().

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!