AlexNet网络的实现
导入必要的工具包
import time
import torch
from torch import nn,optim
import torchvision
添加路径并且根据有无GPU进行选择
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
搭建自己的神经网络层
class AlexNet(nn.Module):
def __init__(self):
super(AlexNet,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1,96,11,4),
nn.ReLU(),
nn.MaxPool2d(3,2),
nn.Conv2d(96,256,5,1,2),
nn.ReLU(),
nn.MaxPool2d(3,2),
nn.Conv2d(256,384,3,1,1),
nn.ReLU(),
nn.Conv2d(384,384,3,1,1),
nn.ReLU(),
nn.Conv2d(384,256,3,1,1),
nn.ReLU(),
nn.MaxPool2d(3,2)
)
self.fc = nn.Sequential(
nn.Linear(256*5*5,4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096,4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096,10)
)
def forward(self,img):
feature = self.conv(img)
output = self.fc(feature.view(img.shape[0],-1))
return output
查看神经网络层
net = AlexNet()
print(net)
加载MNIST数据集
def load_data_fashion__mnist(batch_size,resize = None,
root = '~/Dataaets/FashionMNIST'):
"""Download the fashion mnist dataset and then load into memory
."""
trans = []
if resize:
trans.append(torchvision.transforms.Resize(size = resize))
trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root = root,
train = True,download = True,transform = transform)
mnist_test = torchvision.datasets.FashionMNIST(root = root,
train = False,download = True,transform = transform)
train_iter = torch.utils.data.DataLoader(mnist_train,
batch_size = batch_size,shuffle = True,num_workers = 4)
test_iter = torch.utils.data.DataLoader(mnist_test,batch_size = batch_size,shuffle = False,num_workers = 4)
return train_iter,test_iter
batch_size = 128
#如果出现“out of memory”的报错信息,可减少batch_size或者resize
train_iter,test_iter = load_data_fashion__mnist(batch_size,resize = 224)
执行神经网络
lr,num_epochs = 0.001,5
optimizer = torch.optim.Adam(net.parameters(),lr = lr)
d2l.train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs)
额外需要的扩展包代码
def train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs):
net = net.to(device)
print("training on",device)
loss = torch.nn.CrossEntropyLoss()
batch_count = 0
for epoch in range(num_epochs):
train_l_sum,train_acc_sum,n,start = 0.0,0.0,0,time.time()
for X,y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat,y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim =1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter,net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, train_l_sum / batch_count,
train_acc_sum / n, test_acc, time.time() - start))
来源:CSDN
作者:jasper-cell
链接:https://blog.csdn.net/weixin_44830961/article/details/103461624