问题
For an LSTM network, I've seen great improvements with bucketing.
I've come across the bucketing section in the TensorFlow docs which (tf.contrib).
Though in my network, I am using the tf.data.Dataset
API, specifically I'm working with TFRecords, so my input pipeline looks something like this
dataset = tf.data.TFRecordDataset(TFRECORDS_PATH)
dataset = dataset.map(_parse_function)
dataset = dataset.map(_scale_function)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.padded_batch(batch_size, padded_shapes={.....})
How can I incorporate the bucketing method into a the tf.data.Dataset
pipeline?
If it matters, in every record in the TFRecords file I have the sequence length saved as an integer.
回答1:
Various bucketing
use cases using Dataset API
are explained well here.
bucket_by_sequence_length()
example:
def elements_gen():
text = [[1, 2, 3], [3, 4, 5, 6, 7], [1, 2], [8, 9, 0, 2]]
label = [1, 2, 1, 2]
for x, y in zip(text, label):
yield (x, y)
def element_length_fn(x, y):
return tf.shape(x)[0]
dataset = tf.data.Dataset.from_generator(generator=elements_gen,
output_shapes=([None],[]),
output_types=(tf.int32, tf.int32))
dataset = dataset.apply(tf.contrib.data.bucket_by_sequence_length(element_length_func=element_length_fn,
bucket_batch_sizes=[2, 2, 2],
bucket_boundaries=[0, 8]))
batch = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(2):
print('Get_next:')
print(sess.run(batch))
Output:
Get_next:
(array([[1, 2, 3, 0, 0],
[3, 4, 5, 6, 7]], dtype=int32), array([1, 2], dtype=int32))
Get_next:
(array([[1, 2, 0, 0],
[8, 9, 0, 2]], dtype=int32), array([1, 2], dtype=int32))
来源:https://stackoverflow.com/questions/50606178/tensorflow-tf-data-dataset-and-bucketing