LeNet网络
导入必要的工具包
import time
import torch
from torch import nn,optim
添加文件路径
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
构造神经网络层
class LeNet(nn.Module):
def __init__(self):
super(LeNet,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1,6,5),
nn.Sigmoid(),
nn.MaxPool2d(2,2),
nn.Conv2d(6,16,5),
nn.Sigmoid(),
nn.MaxPool2d(2,2)
)
self.fc = nn.Sequential(
nn.Linear(16*4*4,120),
nn.Sigmoid(),
nn.Linear(120,84),
nn.Sigmoid(),
nn.Linear(84,10)
)
def forward(self,img):
feature = self.conv(img)
output = self.fc(feature.view(img.shape[0],-1))
return output
查看神经网络
net = LeNet()
print(net)
加载数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
估计精度函数
def evaluate_accuracy(data_iter, net,
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')):
acc_sum,n = 0.0,0
with torch.no_grad():
for X,y in data_iter:
if isinstance(net,nn.Module):
net.eval()
acc_sum += (net(X.to(device)).argmax(dim = 1) == y.to(device)).float().sum().cpu().item()
net.train()
else:
if('is_training' in net.__code__.co_varnames):
acc_sum += (net(X,is_training = False).argmax(dim = 1) == y).float().sum().item()
else:
acc_sum += (net(X).argmax(dim = 1) == y).float().sum().item()
n += y.shape[0]
return acc_sum/n
训练函数
def train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs):
net = net.to(device)
print("training on",device)
loss = torch.nn.CrossEntropyLoss()
batch_count = 0
for epoch in range(num_epochs):
train_l_sum,train_acc_sum,n,start = 0.0,0.0,0,time.time()
for X,y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat,y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim =1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter,net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, train_l_sum / batch_count,
train_acc_sum / n, test_acc, time.time() - start))
执行神经网络
lr,num_epochs = 0.001,5
optimizer = torch.optim.Adam(net.parameters(),lr = lr)
train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs)
来源:CSDN
作者:jasper-cell
链接:https://blog.csdn.net/weixin_44830961/article/details/103461753