问题
I have a FASTA file that can easily be parsed by SeqIO.parse.
I am interested in extracting sequence ID's and sequence lengths. I used these lines to do it, but I feel it's waaaay too heavy (two iterations, conversions, etc.)
from Bio import SeqIO
import pandas as pd
# parse sequence fasta file
identifiers = [seq_record.id for seq_record in SeqIO.parse("sequence.fasta",
"fasta")]
lengths = [len(seq_record.seq) for seq_record in SeqIO.parse("sequence.fasta",
"fasta")]
#converting lists to pandas Series
s1 = Series(identifiers, name='ID')
s2 = Series(lengths, name='length')
#Gathering Series into a pandas DataFrame and rename index as ID column
Qfasta = DataFrame(dict(ID=s1, length=s2)).set_index(['ID'])
I could do it with only one iteration, but I get a dict :
records = SeqIO.parse(fastaFile, 'fasta')
and I somehow can't get DataFrame.from_dict
to work...
My goal is to iterate the FASTA file, and get ids and sequences lengths into a DataFrame
through each iteration.
Here is a short FASTA file for those who want to help.
回答1:
You're spot on - you definitely shouldn't be parsing the file twice, and storing the data in a dictionary is a waste of computing resources when you'll just be converting it to numpy
arrays later.
SeqIO.parse()
returns a generator, so you can iterate record-by-record, building a list like so:
with open('sequences.fasta') as fasta_file: # Will close handle cleanly
identifiers = []
lengths = []
for seq_record in SeqIO.parse(fasta_file, 'fasta'): # (generator)
identifiers.append(seq_record.id)
lengths.append(len(seq_record.seq))
See Peter Cock's answer for a more efficient way of parsing just ID's and sequences from a FASTA file.
The rest of your code looks pretty good to me. However, if you really want to optimize for use with pandas
, you can read below:
On minimizing memory usage
Consulting the source of panda.Series, we can see that data
is stored interally as a numpy
ndarray
:
class Series(np.ndarray, Picklable, Groupable):
"""Generic indexed series (time series or otherwise) object.
Parameters
----------
data: array-like
Underlying values of Series, preferably as numpy ndarray
If you make identifiers
an ndarray
, it can be used directly in Series
without constructing a new array (the parameter copy
, default False
) will prevent a new ndarray
being created if not needed. By storing your sequences in a list, you'll force Series to coerce said list to an ndarray
.
Avoid initializing lists
If you know in advance exactly how many sequences you have (and how long the longest ID will be), you could initialize an empty ndarray
to hold identifiers like so:
num_seqs = 50
max_id_len = 60
numpy.empty((num_seqs, 1), dtype='S{:d}'.format(max_id_len))
Of course, it's pretty hard to know exactly how many sequences you'll have, or what the largest ID is, so it's easiest to just let numpy
convert from an existing list. However, this is technically the fastest way to store your data for use in pandas
.
回答2:
David has given you a nice answer on the pandas
side, on the Biopython side you don't need to use SeqRecord
objects via Bio.SeqIO
if all you want is the record identifiers and their sequence length - this should be faster:
from Bio.SeqIO.FastaIO import SimpleFastaParser
with open('sequences.fasta') as fasta_file: # Will close handle cleanly
identifiers = []
lengths = []
for title, sequence in SimpleFastaParser(fasta_file):
identifiers.append(title.split(None, 1)[0]) # First word is ID
lengths.append(len(sequence))
来源:https://stackoverflow.com/questions/19436789/biopython-seqio-to-pandas-dataframe