问题
I have the following code. I know that I can use apply_freq_filter
function to filter out collocations that are less than a frequency count. However, I don't know how to get the frequencies of all the n-gram tuples (in my case bi-gram) in a document, before I decide what frequency to set for filtering. As you can see I am using the nltk collocations class.
import nltk
from nltk.collocations import *
line = ""
open_file = open('a_text_file','r')
for val in open_file:
line += val
tokens = line.split()
bigram_measures = nltk.collocations.BigramAssocMeasures()
finder = BigramCollocationFinder.from_words(tokens)
finder.apply_freq_filter(3)
print finder.nbest(bigram_measures.pmi, 100)
回答1:
NLTK comes with its own bigrams generator
, as well as a convenient FreqDist()
function.
f = open('a_text_file')
raw = f.read()
tokens = nltk.word_tokenize(raw)
#Create your bigrams
bgs = nltk.bigrams(tokens)
#compute frequency distribution for all the bigrams in the text
fdist = nltk.FreqDist(bgs)
for k,v in fdist.items():
print k,v
Once you have access to the BiGrams and the frequency distributions, you can filter according to your needs.
Hope that helps.
回答2:
The finder.ngram_fd.viewitems()
function works
回答3:
from nltk import FreqDist
from nltk.util import ngrams
def compute_freq():
textfile = open('corpus.txt','r')
bigramfdist = FreqDist()
threeramfdist = FreqDist()
for line in textfile:
if len(line) > 1:
tokens = line.strip().split(' ')
bigrams = ngrams(tokens, 2)
bigramfdist.update(bigrams)
compute_freq()
回答4:
I tried all the above and found a simpler solution. NLTK comes with a simple Most Common freq Ngrams.
filtered_sentence is my word tokens
import nltk
from nltk.util import ngrams
from nltk.collocations import BigramCollocationFinder
from nltk.metrics import BigramAssocMeasures
word_fd = nltk.FreqDist(filtered_sentence)
bigram_fd = nltk.FreqDist(nltk.bigrams(filtered_sentence))
bigram_fd.most_common()
This should give the output as:
[(('working', 'hours'), 31),
(('9', 'hours'), 14),
(('place', 'work'), 13),
(('reduce', 'working'), 11),
(('improve', 'experience'), 9)]
来源:https://stackoverflow.com/questions/14364762/counting-n-gram-frequency-in-python-nltk