Apologies in advance if this question is naive. I am new to Python. I am trying to perform a t-test on two columns of my dataframe. It only makes sense to do the t-test after having grouped the columns by another column in the same dataframe.
I am dealing with something like this:
rand_array = np.random.randint(low=10, high=30, size=9)
rand_array2 = np.random.randint(low=10, high=30, size=9)
d = {'key1':[0,0,1,0,1,1,1,0,1], 'key2': rand_array, 'key3': rand_array2}
df1 = pd.DataFrame(d)
print df1
The output I get is:
key1 key2 key3
0 0 20 18
1 0 22 16
2 1 21 26
3 0 21 13
4 1 11 21
5 1 23 10
6 1 17 29
7 0 13 25
8 1 24 29
Then, I group by key1
g1 = df1.groupby('key1')
print g1.groups
>>> {0: Int64Index([0, 1, 3, 7], dtype='int64'), 1: Int64Index([2, 4, 5, 6, 8], dtype='int64')}
I want to perform a t-test on basically 0: Int64Index([0, 1, 3, 7], dtype='int64') vs 1: Int64Index([2, 4, 5, 6, 8], dtype='int64').
Is this possible?
Thank you!
See Welch's T-Test
I'd do it like this:
def welch_ttest(x1, x2):
x_1 = x1.mean()
x_2 = x2.mean()
s1 = x1.std()
s2 = x2.std()
n1 = len(x1)
n2 = len(x2)
return ((x_1 - x_2) / (np.sqrt(s1 ** 2 / n1 + s2 ** 2 / n2)))
def grouped_welch_ttest(df):
return welch_ttest(df.key2, df.key3)
df1.groupby('key1').apply(grouped_welch_ttest)
key1
0 -1.471497
1 1.487045
dtype: float64
来源:https://stackoverflow.com/questions/42316202/group-by-groups-to-pandas-series-dataframe