问题
When I print a numpy array, I get a truncated representation, but I want the full array.
Is there any way to do this?
Examples:
>>> numpy.arange(10000)
array([ 0, 1, 2, ..., 9997, 9998, 9999])
>>> numpy.arange(10000).reshape(250,40)
array([[ 0, 1, 2, ..., 37, 38, 39],
[ 40, 41, 42, ..., 77, 78, 79],
[ 80, 81, 82, ..., 117, 118, 119],
...,
[9880, 9881, 9882, ..., 9917, 9918, 9919],
[9920, 9921, 9922, ..., 9957, 9958, 9959],
[9960, 9961, 9962, ..., 9997, 9998, 9999]])
回答1:
Use numpy.set_printoptions:
import sys
import numpy
numpy.set_printoptions(threshold=sys.maxsize)
回答2:
import numpy as np
np.set_printoptions(threshold=np.inf)
I suggest using np.inf
instead of np.nan
which is suggested by others. They both work for your purpose, but by setting the threshold to "infinity" it is obvious to everybody reading your code what you mean. Having a threshold of "not a number" seems a little vague to me.
回答3:
The previous answers are the correct ones, but as a weaker alternative you can transform into a list:
>>> numpy.arange(100).reshape(25,4).tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19], [20, 21,
22, 23], [24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35], [36, 37, 38, 39], [40, 41,
42, 43], [44, 45, 46, 47], [48, 49, 50, 51], [52, 53, 54, 55], [56, 57, 58, 59], [60, 61,
62, 63], [64, 65, 66, 67], [68, 69, 70, 71], [72, 73, 74, 75], [76, 77, 78, 79], [80, 81,
82, 83], [84, 85, 86, 87], [88, 89, 90, 91], [92, 93, 94, 95], [96, 97, 98, 99]]
回答4:
This sounds like you're using numpy.
If that's the case, you can add:
import numpy as np
np.set_printoptions(threshold=np.nan)
That will disable the corner printing. For more information, see this NumPy Tutorial.
回答5:
NumPy 1.15 or newer
If you use NumPy 1.15 (released 2018-07-23) or newer, you can use the printoptions
context manager:
with numpy.printoptions(threshold=numpy.inf):
print(arr)
(of course, replace numpy
by np
if that's how you imported numpy
)
The use of a context manager (the with
-block) ensures that after the context manager is finished, the print options will revert to whatever they were before the block started. It ensures the setting is temporary, and only applied to code within the block.
See numpy.printoptions documentation for details on the context manager and what other arguments it supports.
回答6:
Here is a one-off way to do this, which is useful if you don't want to change your default settings:
def fullprint(*args, **kwargs):
from pprint import pprint
import numpy
opt = numpy.get_printoptions()
numpy.set_printoptions(threshold='nan')
pprint(*args, **kwargs)
numpy.set_printoptions(**opt)
回答7:
Using a context manager as Paul Price sugggested
import numpy as np
class fullprint:
'context manager for printing full numpy arrays'
def __init__(self, **kwargs):
kwargs.setdefault('threshold', np.inf)
self.opt = kwargs
def __enter__(self):
self._opt = np.get_printoptions()
np.set_printoptions(**self.opt)
def __exit__(self, type, value, traceback):
np.set_printoptions(**self._opt)
a = np.arange(1001)
with fullprint():
print(a)
print(a)
with fullprint(threshold=None, edgeitems=10):
print(a)
回答8:
numpy.savetxt
numpy.savetxt(sys.stdout, numpy.arange(10000))
or if you need a string:
import StringIO
sio = StringIO.StringIO()
numpy.savetxt(sio, numpy.arange(10000))
s = sio.getvalue()
print s
The default output format is:
0.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
...
and it can be configured with further arguments.
Note in particular how this also not shows the square brackets, and allows for a lot of customization, as mentioned at: How to print a Numpy array without brackets?
Tested on Python 2.7.12, numpy 1.11.1.
回答9:
This is a slight modification (removed the option to pass additional arguments to set_printoptions)
of neoks answer.
It shows how you can use contextlib.contextmanager to easily create such a contextmanager with fewer lines of code:
import numpy as np
from contextlib import contextmanager
@contextmanager
def show_complete_array():
oldoptions = np.get_printoptions()
np.set_printoptions(threshold=np.inf)
try:
yield
finally:
np.set_printoptions(**oldoptions)
In your code it can be used like this:
a = np.arange(1001)
print(a) # shows the truncated array
with show_complete_array():
print(a) # shows the complete array
print(a) # shows the truncated array (again)
回答10:
Complementary to this answer from the maximum number of columns (fixed with numpy.set_printoptions(threshold=numpy.nan)
), there is also a limit of characters to be displayed. In some environments like when calling python from bash (rather than the interactive session), this can be fixed by setting the parameter linewidth
as following.
import numpy as np
np.set_printoptions(linewidth=2000) # default = 75
Mat = np.arange(20000,20150).reshape(2,75) # 150 elements (75 columns)
print(Mat)
In this case, your window should limit the number of characters to wrap the line.
For those out there using sublime text and wanting to see results within the output window, you should add the build option "word_wrap": false
to the sublime-build file [source] .
回答11:
Since NumPy version 1.16, for more details see GitHub ticket 12251.
from sys import maxsize
from numpy import set_printoptions
set_printoptions(threshold=maxsize)
回答12:
Suppose you have a numpy array
arr = numpy.arange(10000).reshape(250,40)
If you want to print the full array in a one-off way (without toggling np.set_printoptions), but want something simpler (less code) than the context manager, just do
for row in arr:
print row
回答13:
To turn it off and return to the normal mode
np.set_printoptions(threshold=False)
回答14:
You can use the array2string
function - docs.
a = numpy.arange(10000).reshape(250,40)
print(numpy.array2string(a, threshold=numpy.nan, max_line_width=numpy.nan))
# [Big output]
回答15:
You won't always want all items printed, especially for large arrays.
A simple way to show more items:
In [349]: ar
Out[349]: array([1, 1, 1, ..., 0, 0, 0])
In [350]: ar[:100]
Out[350]:
array([1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1])
It works fine when sliced array < 1000 by default.
回答16:
If an array is too large to be printed, NumPy automatically skips the central part of the array and only prints the corners:
To disable this behaviour and force NumPy to print the entire array, you can change the printing options using set_printoptions
.
>>> np.set_printoptions(threshold='nan')
or
>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)
You can also refer to the numpy documentation numpy documentation for "or part" for more help.
来源:https://stackoverflow.com/questions/1987694/how-to-print-the-full-numpy-array-without-truncation