问题
A <- data.frame(Item_A = c("00EF", "00EF", "00EF", "00EF", "00EF", "00FR", "00FR"),
Item_B = c(NA, NA, NA, NA, "JAMES RIVER", NA, NA))
B <- data.frame(Item_A = c("00EF", "00EF", "00EF", "00FR", "00FR"),
Item_B = c("JAMES RIVER", NA, "JAMES RIVER",
"RICE MIDSTREAM", "RICE MIDSTREAM"))
Expected:
A <- data.frame(Item_A = c("00EF", "00EF", "00EF", "00EF", "00EF", "00FR", "00FR"),
Item_B = c("JAMES RIVER", "JAMES RIVER", "JAMES RIVER",
"JAMES RIVER", "JAMES RIVER", "RICE MIDSTREAM", "RICE MIDSTREAM"))
B <- data.frame(Item_A = c("00EF", "00EF", "00EF", "00FR", "00FR"),
Item_B = c("JAMES RIVER", "JAMES RIVER", "JAMES RIVER",
"RICE MIDSTREAM", "RICE MIDSTREAM"))
I have to fill in item Item_B
according to the Item_B
of other rows where Item_A
is the same. For example, the first to fourth observation of Item_B
in data set A
need to become "JAMES RIVER".
Can you please suggest a way to fill in the missing values in R? I tried many techniques but couldn't get what I wanted.
回答1:
As far as I have understood the question, this is not just an exercise to simply filling up missing values in one column of each data.frame. I believe this requires to fill in the values of Item_B
which belong to Item_A
with help of a look up or mapping table:
library(data.table)
# create mapping table from both data.frames
map <- unique(rbindlist(list(A, B)))[!is.na(Item_B)]
# or, in case there are additional columns besides Item_A and Item_B
map <- unique(rbindlist(list(A, B))[!is.na(Item_B), .(Item_A, Item_B)])
map
Item_A Item_B 1: 00FF JAMES RIVER 2: 00EF JAMES RIVER 3: 00FR RICE MIDSTREAM
# join and replace
setDT(A)[map, on = c("Item_A"), Item_B := i.Item_B][]
Item_A Item_B 1: 00FF JAMES RIVER 2: 00FF JAMES RIVER 3: 00FF JAMES RIVER 4: 00FF JAMES RIVER 5: 00FF JAMES RIVER 6: 00FR RICE MIDSTREAM 7: 00FR RICE MIDSTREAM
setDT(B)[map, on = c("Item_A"), Item_B := i.Item_B][]
Item_A Item_B 1: 00EF JAMES RIVER 2: 00EF JAMES RIVER 3: 00EF JAMES RIVER 4: 00FR RICE MIDSTREAM 5: 00FR RICE MIDSTREAM
During join, there are two columns named Item_B
, one from the first data table, A
(or B
, resp.) and the other from the second data table map
. To distinguish them, the i.
prefix indicates that i.Item_B
should be taken from map
.
回答2:
You could try to create a dictionnary dataframe.
library(dplyr)
dictionnary <- bind_rows(A,B) %>%
filter(!is.na(Item_B)) %>%
distinct
find_name <- function(id){
name <- dictionnary[["Item_B"]][which(dictionnary[["Item_A"]]==id)]
return(name)
}
test_id <- c("00EF","00EF","00EF","00FR","00FR")
new_names <- sapply(test_id ,find_name )
You could then declare your dataframe :
New_A <- data.frame(Item_A=c("00FF","00FF","00FF","00FF","00FF","00FR","00FR"),
Item_B=sapply(c("00FF","00FF","00FF","00FF","00FF","00FR","00FR"),find_name))
New_B <- data.frame(Item_A=c("00EF","00EF","00EF","00FR","00FR"),
Item_B=sapply(c("00EF","00EF","00EF","00FR","00FR"),find_name))
回答3:
You could try tidyr library helper fill
library(tidyr)
A %>%
tidyr::fill(Item_B, .direction = "down") %>%
tidyr::fill(Item_B, .direction = "up")
Item_A Item_B
1 00FF JAMES RIVER
2 00FF JAMES RIVER
3 00FF JAMES RIVER
4 00FF JAMES RIVER
5 00FF JAMES RIVER
6 00FR JAMES RIVER
7 00FR JAMES RIVER
回答4:
@YXCHEN update based on your input
lookup_df <- unique(rbindlist(list(A, B)))[!is.na(Item_B)]
left_join(A %>% select(Item_A), lookup_df)
left_join(B %>% select(Item_A), lookup_df)
来源:https://stackoverflow.com/questions/45938081/fill-up-missing-values-using-the-other-data