2 实现函数 cv2.approxPloyDP

。_饼干妹妹 提交于 2019-12-07 17:17:01

凸形状内部的任意两点的连线都应该在形状里面。

1 道格拉斯-普克算法 Douglas-Peucker algorithm

这个算法在其他文章中讲述的非常详细,此处就详细撰述。

下图是引用维基百科的。ε称之为阈值 shreshold

图一

静态图如下:

具体详细的可以参考如下两篇文章。

相关文章如下:

道格拉斯-普克 抽稀算法 附javascript实现,该文章只看他的文字讲解就好,他的代码不是通过python实现的。

道格拉斯-普克算法(Douglas–Peucker algorithm),该文章讲的也比较详细。

Ramer-Douglas-Peucker算法,维基百科的名词诠释

 

2 实现函数 cv2.approxPloyDP

作用:对目标图像进行(按指定精度、阈值,两者是一个概念)进行近似多边形曲线拟合。

使用一个较少顶点的曲线/多边形去拟合一个顶点较多的曲线/多边形,两曲线/多边形间的距离小于或等于某一指定精度/阈值

 

cv2.approxPolyDP(curve, epsilon, closed) -> approxCurve

参数:

curve - 2D点矢量,为图像的 “ 轮廓 ” 值。

epsilon - 指定近似精度的参数ε,这是原始曲线与其近似值之间的最大距离。参数越小,两直线越接近

closed - 若为true,曲线第一个点与最后一个点连接形成闭合曲线,若为false,曲线不闭合。

返回值:

approxCurve - 曲线/多边形近似结果。

备注:

为什么已经有了一个能够精确表示的轮廓 2D点矢量,却还需要得到一个近似多边形呢?

这主要是近似得到的多边形是由一组直线构成的,故能够在一个区域内定义多边形,以便后续的操作和处理,该项操作在许多计算机视觉任务中非常重要。

代码示例:

# epsilon 为近似度参数,该值需要轮廓的周长信息
# 多边形周长与源轮廓周长之比就是epsilon
epsilon = 0.01 * cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt, epsilon, True)

# approx 为列表list,若approx为元组,则需要将其转换成列表list 
# 为了安全起见,可将[approx]作为参数传入函数
cv2.drawContours(img, [approx], -1, (255, 255, 0), 2)

运行:

当 epsilon 的取值不同时,会存在不同的拟合程度。

3 凸包convexHull

作用:找到2D点集的凸包

cv2.convexHull(points[, clockwise[, returnPoints]]]) -> hull

参数:

points - 2D点集 2D point set

clockwise - 布尔类型,默认false;若为true,输出的凸包则为顺时针方向;若为false,输出的凸包则为逆时针方向。注意:这里的坐标系是x轴方向指向右侧,y轴方向指向上方。

returnPoints - 布尔类型,默认true,在矩阵情况下,若为true,则返回凸包点集;若为false,则返回整数向量的索引

返回值:

hull - 输出的凸包,是整数向量的索引(an integer vector of indices)或点集向量(vector of points)

代码示例:

hull = cv2.convexHull(cnt)

运行:

4 代码综合

4.1 保留原始图像

将上述代码进行综合,示例如下

import cv2
import numpy as np

img = cv2.imread('Mjolnir.jpg')  
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)  
contours, hierarchy = cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) 

for cnt in contours:

    # ----源轮廓-------
    cv2.drawContours(img, [cnt], -1, (0, 255, 0), 2)

    # 近似多边形
    # epsilon 为近似度参数,该值需要轮廓的周长信息
    # 多边形周长与源轮廓周长之比就是epsilon
    epsilon = 0.01 * cv2.arcLength(cnt,True)
    approx = cv2.approxPolyDP(cnt, epsilon, True)
    cv2.drawContours(img, [approx], -1, (255, 255, 0), 2)

    # 凸包
    hull = cv2.convexHull(cnt)
    cv2.drawContours(img, [hull], -1, (0, 0, 255), 2)

cv2.imshow("approx",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行

4.2 在新建幕布上绘制轮廓

当然在书(OpenCV 3 计算机视觉)第三章 3.10 凸轮廓与Douglas-Peucker算法 中,是将三个轮廓放在了黑色图像上。

实现代码如下:

import cv2
import numpy as np

img = cv2.imread('Mjolnir.jpg')  
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)  
contours, hierarchy = cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) 
# 生成黑色"幕布"
black = cv2.cvtColor(np.zeros((img.shape[1], img.shape[0]), dtype=np.uint8), cv2.COLOR_GRAY2BGR)

for cnt in contours:

    # ----源轮廓-------
    cv2.drawContours(black, [cnt], -1, (0, 255, 0), 2)

    # 近似多边形
    # epsilon 为近似度参数,该值需要轮廓的周长信息
    # 多边形周长与源轮廓周长之比就是epsilon
    epsilon = 0.01 * cv2.arcLength(cnt,True)
    approx = cv2.approxPolyDP(cnt, epsilon, True)
    cv2.drawContours(black, [approx], -1, (255, 255, 0), 2)

    # 凸包
    hull = cv2.convexHull(cnt)
    cv2.drawContours(black, [hull], -1, (0, 0, 255), 2)

cv2.imshow("approx",black)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行

 

参考:

OpenCV入门之寻找图像的凸包(convex hull)关于凸包,讲的不错。

Convex Hull在Python和C ++中使用OpenCV 讲解的非常详细以及每一步的实现语言

opencv学习(四十一)之寻找凸包convexHull() 虽然实现语言不同,但是讲解还挺详细的

Convex Hull 这个粉红色的,是不是萌妹版

边缘检测,框出物体的轮廓(使用opencv-python)

Python+OpenCV教程番外篇9:凸包及更多轮廓特征

结构分析和形状描述符 官方文档

opencv-python的中文教程 - OpenCV中的轮廓 较为系统性

Convex Hull在Python和C ++中使用OpenCV  较为系统性

 

  

 

代码图像素材

 

 

转载于:https://www.cnblogs.com/gengyi/p/10344945.html

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!